首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A reproducible Romanowsky-Giemsa staining (RGS) can be carried out with standardized staining solutions containing the two dyes azure B (AB) and eosin Y (EY). After staining, cell nuclei have a purple coloration generated by DNA-AB-EY complexes. The microspectra of cell nuclei have a sharp and intense absorption band at 18,100 cm-1 (552 nm), the so called Romanowsky band (RB), which is due to the EY chromophore of the dye complexes. Other absorption bands can be assigned to the DNA-bound AB cations. Artificial DNA-AB-EY complexes can be prepared outside the cell by subsequent staining of DNA with AB and EY. In the first step of our staining experiments we prepared thin films of blue DNA-AB complexes on microslides with 1:1 composition: each anionic phosphodiester residue of the nucleic acid was occupied by one AB cation. Microspectrophotometric investigations of the dye preparations demonstrated that, besides monomers and dimers, mainly higher AB aggregates are bound to DNA by electrostatic and hydrophobic interactions. These DNA-AB complexes are insoluble in water. Therefore it was possible to stain the DNA-AB films with aqueous EY solutions and also to prepare insoluble DNA-AB-EY films in the second step of the staining experiments. After the reaction with EY, thin sites within the dye preparations were purple. The microspectra of the purple spots show a strong Romanowsky band at 18,100 cm-1. Using a special technique it was possible to estimate the composition of the purple dye complexes. The ratio of the two dyes was approximately EY:AB approximately 1:3. The EY anions are mainly bound by hydrophobic interaction to the AB framework of the electrical neutral DNA-AB complexes. The EY absorption is red shifted by the interaction of EY with the AB framework of DNA-AB-EY. We suppose that this red shift is caused by a dielectric polarization of the bound EY dianions. The DNA chains in the DNA-AB complexes can mechanically be aligned in a preferred direction k. Highly oriented dye complexes prepared on microslides were birefringent and dichroic. The orientation is maintained during subsequent staining with aqueous EY solutions. In this way we also prepared highly orientated purple DNA-AB-EY complexes on microslides. The light absorption of both types of dye complexes was studied by means of a microspectrophotometer equipped with a polarizer and an analyser. The sites of best orientation within the dye preparations were selected under crossed nicols according to the quality of birefringence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Summary Nuclei of Giemsa stained cells show a purple coloration, which is generated by a complex of DNA, azure B (AB) and eosin Y (EY). The structure of this complex is unknown. Its absorption spectrum shows a sharp and strong band at 18 100 cm–1 (552 nm), the so called Romanowsky band (RB). It is possible to produce the complex outside of the cell, but it is cubersome to handle. Easier to handle is a purple complex composed of chondroitin sulfate (CHS), AB and EY, which also shows a sharp and strong RB at 18100 cm–1 in the absorption spectrum. This CHS-AB-EY complex is a model for the DNA-AB-EY complex of Giemsa stained cell nuclei. We tried to investigate its structure.In the first step of the staining procedure CHS binds AB cations forming a stable CHS-AB complex. In the case of saturation each anionic SO 4 - and COO-binding site of CHS is occupied by one dye cation and the complex has 1:1 composition. It has a strong and broad absorption band with its maximum at ca. 18000 cm–1 (556 nm). In the second step the CHS-AB complex additionally binds EY dianions forming the purple CHS-AB-EY complex with its RB at 18100 cm–1. This band can be clearly distinguished from the broad absorption of the bound AB cations. RB is generated by the EY chromophore, whose absorption is shifted to longer wavelength by the interaction with the CHS-AB framework.The CHS chains of the CHS-AB and CHS-AB-EY complexes can be mechanically aligned in a preferred direction k. Fine films of highly orientated complexes were prepared with a special technique and studied with a microspectrophotometer equipped with a polarizer and an analyzer. They are birefringent and dichroic-the more birefringent, the better the mechanical orientation. The sites of best orientation within the film were selected according to the quality of the birefringence. We measured the absorption of these regions with linearly polarized light. By setting the polarizer (e p parallel () or perpendicular () to k, we found that the transition moment m AB of the long wave-length absorption of AB in the CHS-AB and the CHS-AB-EY complexes is polarized almost perpendicular to the preferred direction k, m AB k. But the transition moment m EY of EY in CHS-AB-EY is polarized parallel to k, m EY k. The transition moments m AB and m EY lay in the molecular plane in the direction of the long axes of the AB and EY chromophores, respectively. Therefore, in both CHS-AB and CHS-AB-EY the long axes of the AB molecules are approximately perpendicular to the CHS chain; but in CHS-AB-EY the long axes of the EY chromophore are parallel to the chain of the biopolymer. This structure is somewhat surprising. In the CHS-AB-EY dye complex the chromophores of AB and EY are not parallel but approximately perpendicular to each other.  相似文献   

3.
Nuclei of Giemsa stained cells show a purple coloration, which is generated by a complex of DNA, azure B (AB) and eosin Y (EY). The structure of this complex is unknown. Its absorption spectrum shows a sharp and strong band at 18,100 cm-1 (552 nm), the so called Romanowsky band (RB). It is possible to produce the complex outside of the cell, but it is cubersome to handle. Easier to handle is a purple complex composed of chondroitin sulfate (CHS), AB and EY, which also shows a sharp and strong RB at 18,100 cm-1 in the absorption spectrum. This CHS-AB-EY complex is a model for the DNA-AB-EY complex of Giemsa stained cell nuclei. We tried to investigate its structure. In the first step of the staining procedure CHS binds AB cations forming a stable CHS-AB complex. In the case of saturation each anionic SO4- and COO- -binding site of CHS is occupied by one dye cation and the complex has 1:1 composition. It has a strong and broad absorption band with its maximum at ca. 18,000 cm-1 (556 nm). In the second step the CHS-AB complex additionally binds EY dianions forming the purple CHS-AB-EY complex with its RB at 18,100 cm-1. This band can be clearly distinguished from the broad absorption of the bound AB cations. RB is generated by the EY chromophore, whose absorption is shifted to longer wavelength by the interaction with the CHS-AB framework.  相似文献   

4.
Estimation of coefficient of coancestry using molecular markers in maize   总被引:6,自引:0,他引:6  
Summary The coefficient of coancestry (fAB) between individuals A and B is the classical measure of genetic relationship. fAB is determined from pedigree records and is the probability that random alleles at the same locus in A and B are copies of the same ancestral allele or identical by descent (ibd). Recently, the proportion of molecular marker variants shared between A and B (SAB) has been used to measure genetic relationship. But SAB is an upwardly-biased estimator of fAB, especially between distantly-related lines. fAB, SAB, and adjusted (to remove bias) estimates of molecular marker similarity (f AB M ) were compared. RFLP banding patterns at 46 probe-restriction enzyme combinations were obtained for 23 maize inbred lines derived from the Iowa Stiff Stalk Synthetic (BSSS) maize (Zea mays L.) population, and for 4 non-BSSS lines. f AB M was estimated as , where A (or B) was the average proportion of RFLP variants shared between inbred A (or inbred B) and the non-BSSS lines. The average fAB among 253 pairwise combinations of BSSS lines was 0.212, whereas the average SAB was 0.397. The average f AB M was 0.162, indicating that the upward bias in SAB was effectively removed. SAB and fAB were significantly different ( = 0.05) in 76.3% of the comparisons, whereas 24.9% of the f AB M values differed significantly from fAB. The latter result suggests that selection and/or drift were present during inbred line development and that fAB may not be an accurate measure of the true proportion of ibd alleles between two lines. Cluster analyses based on S AB M and f AB M grouped lines according to pedigree, although several exceptions were noted. The presence of shared molecular marker variants between unrelated lines must be considered when setting SAB-based minimum distances for varietal protection. Under simplified conditions, more than 250 molecular marker loci are necessary to obtain sufficiently precise estimates of coefficient of coancestry using molecular markers.A contribution from Limagrain Genetics, a Group Limagrain company  相似文献   

5.
The interaction between DNA and a benzothiazole-quinoline cyanine dye with a trimethine bridge (TO-PRO-3) results in the formation of three noncovalent complexes. Unbound TO-PRO-3 has an absorption maximum (λmax) of 632 nm, while the bound dyes (with calf thymus DNA) have electronic transitions with λmax = 514nm (complex I), 584nm (complex II) and 642 nm (complex III). The blue shifts in the electronic transitions and the bisignate shape of the circular dichroism bands indicate that TO-PRO-3 aggregates with DNA. Complex I has a high dye:base pair stoichiometry, which does not depend on base sequence or base modifications. The bound dyes exhibit strong interdye coupling, based on studies with a short oligonucleotide and on enhanced resonance scattering. From thermal dissociation studies, the complex is weakly associated with DNA. Studies with poly(dGdC)2 and poly(dIdC)2 and competitive binding with distamycin demonstrate that complex II is bound in the minor groove. This complex stabilizes the helix against dissociation. For complex III, the slightly red-shifted electronic transition and the stoichiometry are most consistent with intercalation. Using poly(dAdT)2, the complexes have the following dye mole fractions (Xdye): Xdye = 0.65 (complex I), 0.425 (complex II) and 0.34 (complex III).  相似文献   

6.
Summary This series of papers addresses the mechanism by which certain impermeant oxonol dyes respond to membranepotential changes, denoted E m . Hemispherical oxidized cholesterol bilayer membranes provided a controlled model membrane system for determining the dependence of the light absorption signal from the dye on parameters such as the wavelength and polarization of the light illuminating the membrane, the structure of the dye, and E m . This paper is concerned with the determination and analysis of absorption spectral changes of the dye RGA461 during trains of step changes ofE m . The wavelength dependence of the absorption signal is consistent with an on-off mechanism in which dye molecules are driven by potential changes between an aqueous region just off the membrane and a relatively nonpolar binding site on the membrane. Polarization data indicate that dye molecules in the membrane site tend to orient with the long axis of the chromophore perpendicular to the surface of the membrane. Experiments with hyperpolarized human red blood cells confirmed that the impermeant oxonols undergo a potential-dependent partition between the membrane and the bathing medium.  相似文献   

7.
Summary Sulfonation of periodate-oxidized vicinal hydroxyl groups on a polysaccharide backbone allows binding of toluidine blue (aldehyde bisulfite-toluidine blue or ABT staining) with a concurrent metachromatic shift of the dye's absorption peak from 630 nm (monomer) to 580 nm (isolated dimer interaction at vicinal sulfonate groups) or 540 nm (dye polymer interaction). A molar absorptivity of 2.358±0.134×104 at 540 nm for polymeric toluidine blue O chloride (TB) aggregates was determined by spectrophotometry of TB bound to hyaluronic acid (HA) and sulfonated glycogen (SG) in water. Microspectrophotometry of ABT stained frog rod outer segments (FROS) showed spectra similar to TB in aqueous HA and SG solutions with absorbances corresponding to 0.063 M dye bound to sugar. Given two dye molecules bound per sugar residue and a rhodopsin concentration of 3.25 mM in FROS, the above indicates 10 stainable sugars per rhodopsin are contained in these cells. Half of these sugars are sensitive to hyaluronidase digestion implying 5 glycosaminoglycan (GAG) repeating units and 5 stainable oligosaccharide sugar residues per rhodopsin in FROS. The GAGs in FROS appear to be primarily HA. Birefringence measurements at 475 nm indicate that this HA and the oligosaccharide of rhodopsin are anisotropically oriented in these cells.Supported by NIH grants EY00012, EY07035 and EY01583  相似文献   

8.
The osmotic pressure equation for nonideal, associating systems of the type nA +mB ? AnBm, has been derived, by using the assumption yA nB m/yA nyB m = 1. This treatment can also be applied to related associations such as nA + mB ? AB + AB2 + A2B + …. From osmotic pressure experiments on the pure reactants it is possible to obtain the molecular weights (MA and MB) of the reactants and also the virial coefficients (BAA and BBB) of the reactants. The osmotic pressure of a nonreacting mixture of A and B can be calculated from these measurements. It can be used along with osmotic pressure measurements on equilibrium mixtures of A and B to obtain expressions containing the equilibrium constant (or constants) and the cross-virial coefficients (BAB and BBA). Several procedures are described for the evaluation of the equilibrium constant (or constants) and the BAB or BBA terms. It appears that this procedure is a general one which is applicable to associations of the type nA + mB ? AB + A2B + AB2 + …. By correcting for nonideal behavior, one should then be able to apply it to any method available for analyzing ideal associations of the types considered here. In addition it is possible, subject to certain restrictions, to analyze associations of the type 3A + B ? A2 + AB.  相似文献   

9.
Summary The interaction of the potential-sensitive extrinsic probe oxonol VI with beef heart submitochondrial particles has been investigated under time resolved and equilibrium conditions. The time course of the probe absorption spectrum red shift induced by ATP or NADH injection into a suspension of submitochondrial particles in a dye solution is biphasic, consisting of a faster process described by a second-order rate law withk 23×105 m –1 sec–1. For the ATP pulse experiments, the slower process follows first-order kinetics withk 10.3 sec–1. In oxygen pulse experiments to an anaerobic dyeparticle system, the slower process is not significantly developed due to rapid depletion of the oxygen, but the faster process follows second-order kinetics with the same rate constant as for the ATP and NADH cases. Evidence for permeation of the submitochondrial particle membrane by oxonol VI has been obtained; the slower process is interpretable as describing the permeation of the membrane bilayer. The results of the time-resolved work are consistent with a mechanism involving a redistribution of the dye from the bulk phase to the particle membrane. The value of the second-order rate constant for passive binding of the dye to submitochondrial particles is not compatible with a mechanism proposed to explain the microsecond probe response times in bilayer and excitable membrane experiments nor are such rapid signals observed in the oxonol VI-submitochondrial particle system.  相似文献   

10.
Paddock  M.L.  Senft  M.E.  Graige  M.S.  Rongey  S.H.  Turanchik  T.  Feher  G.  Okamura  M.Y 《Photosynthesis research》1998,55(2-3):281-291
The structural basis for proton coupled electron transfer to QB in bacterial reaction centers (RCs) was studied by investigating RCs containing second site suppressor mutations (Asn M44 Asp, Arg M233 Cys, Arg H177 His) that complement the effects of the deleterious Asp L213 Asn mutation [DN(L213)]. The suppressor RCs all showed an increased proton coupled electron transfer rate k AB (2)(QA QB + H+ QAQBH) by at least 103 (pH 7.5) and a recombination rate k BD (D+QAQB DQAQB) 15–40 times larger than the value found in DN(L213) RCs. Proton transfer was studied by measuring the dependence of k AB (2) on the free energy for electron transfer (Get). k AB (2) was independent of Get in DN(L213) RCs, but dependent on Get in native and all suppressor RCs. This shows that proton transfer limits the k AB (2) reaction with a rate of 0.1s–1 in DN(L213) RCs but is not rate limiting and at least 108-fold faster in native and 105-fold faster in the suppressor RCs. The increased rate of proton transfer by the suppressor mutations are proposed to be due to: (i) a reduction in the barrier to proton transfer by providing a more negative electrostatic potential near QB ; and/or (ii) structural changes that permit fast proton transfer through the network of protonatable residues and water molecules near QB.  相似文献   

11.
The LH1 complexes were isolated from the purple photosynthetic bacterium Rhodospirillum rubrum strain S1. They were initially solubilized using LDAO and then purified in the presence of Triton X-100. The purified complexes were then either used directly or following an exchange into LDAO. Stark spectroscopy was applied to probe the electrostatic field around the bacteriochlorophyll a (BChl a) and carotenoid binding sites in the LH1 complexes surrounded by these two different surfactant molecules. Polarizabilty change () and dipole moment change () upon photoexcitation were determined for the BChl a Qy band. Both of these parameters show smaller values in the presence of LDAO than in Triton X-100. This indicates that polar detergent molecules, like LDAO, affect the electrostatic environment around BChl a, and modify the nonlinear optical parameters ( and values). The electrostatic field around the BChl a binding site, which is generated by the presence of LDAO, was determined to be |E L | = ∼3.9 × 105 [V/cm]. Interestingly, this kind of electrostatic effect was not observed for the carotenoid-binding site. The present study demonstrates a unique electrostatic interaction between the polar detergent molecules surrounding the LH1 complex and the Qy absorption band of BChl a that is bound to the LH1 complex.  相似文献   

12.
Summary The apparent Michaelis constant (K m) of NADH for muscle-type (M4 isozyme) lactate dehydrogenases (LDHs) is highest, at any given temperature of measurement, for LDHs of cold-adapted vertebrates (Table 1). However, these interspecific differences in theK m of NADH are not due to variations in LDH-NADH binding affinity. Rather, theK m differences result entirely from interspecific variation in the substrate turnover constant (k cat) (Fig. 1; Table 2). This follows from the fact that theK m of NADH is equal tok cat divided by the on constant for NADH binding to LDH,k 1, so that interspecific differences ink cat, combined with identical values fork 1 among different LDH reactions, make the magnitude of theK m of NADH a function of substrate turnover number. The temperature dependence of theK m of NADH for a single LDH homologue is the net result of temperature dependence of bothk cat andk 1 (Figs. 3 and 4). Temperature independentK m values can result from simultaneous, and algebraically offsetting, increases ink cat andk 1 with rising temperature. Salt-induced changes in theK m of NADH also may be due to simultaneous perturbation of bothk cat andk 1 (Table 3). These findings are discussed from the standpoint of the evolution of LDH kinetic properties, particularly the interspecific conservation of catalytic and regulatory functions, in differently-adapted species.  相似文献   

13.
Lipophilic cationic fluorescent dyes (D) specifically stain the mitochondria of living cells. A perfusion chamber for cell cultures is described, which can be used to determine the kinetics of vital staining of the mitochondria of single selected cells in situ. In these experiments styrylpyridinium dyes and cultures of HeLa cells were used. The dyes differ strongly in their lipophilic properties; R m values and the partition coefficients P o/w between n-octanol (o) and water (w) were determined in order to characterize their lipophilicity. In the thermostat-regulated chamber the concentration of the dye C D can be increased from C D=0 to C D>0 within a few seconds (concentration jump). Thus, the time t=0 for the beginning of the vital staining and the dye concentration in the cell medium during the staining experiment, C D=const., are unambiguously defined. The concentration of the dye, C b, which is bound to the mitochondria (b), is proportional to the intensity of the fluorescence I b. On the other hand, the free dye molecules (f) in the aqueous medium exhibit practically no fluorescence, I fI b. The intensity of the fluorescence I=I b was measured as a function of time t; the measured values were corrected for photobleaching. The fluorescence intensity I(t) at first increases linearly with t and reaches a saturation value for t . In the linear range of I(t) the flow J o=(dI/dt)o of the dye into the cell depends strongly on the dye concentration and increases linearly with C D. The concentration range C D=10–9–10–5 M at 37° C was investigated. From the linear correlation between J o and C D it follows that the kinetics of the vital staining of mitochondria is controlled by diffusion. At t=0 the flow of the xenobiotic agent through the cell membrane determines the rate of staining. The slope dJ o/dC D of the plot J o vs C D describes the efficiency of dye accumulation at the mitochondria and strongly increases with increasing lipophilicity of the dye molecules. Thus lipophilic dyes pass through the cell membrane more easily than less lipophilic molecules.  相似文献   

14.
Summary The voltage dependence for outward-going current of the Ca-activated K+ conductance (g k (Ca)) of the human red cell membrane has been examined over a wide range of membrane potentials (V m) at constant values of [K+]ex, [K+]c and pHc, the intact cells being preloaded to different concentrations of ionized calcium. Outward-current conductances were calculated from initial net effluxes of K+ and the corresponding (V m-Ek) values. The basic conductance, defined as the outward-current coductance at (V m-Ek) 20 mV and [K+]ex 3mM (B. Vestergaard-Bogind, P. Stampe and P. Christophersen,J. Membrane Biol. 95:121–130, 1987) was found to be a function of cellular ionized Ca. At all degrees of Ca activationg K(Ca) was an apparently linear function of voltage (V m range –40 to +70 mV), the absolute level as well as the slope decreasing with decreasing activation. In a simple two-state model the constant voltage dependence can, at the different degrees of Ca activation, be accounted for by a Boltzmann-type equilibrium function with an equivalent valence of 0.4, assuming chemical equilibrium atV m=0 mV. Alternatively, the phenomenon might be explained by a voltage-dependent block of the outward current by an intracellular ion. Superimposed upon the basic conductance is the apparently independent inward-rectifying steep voltage function with an equivalent valence of 5 and chemical equilibrium at the givenE K value.Abbreviations CCCP carbonyl cyanidem-chlorophenylhydrazone - DIDS 4,4-diisothiocyanostilbene-2,2-disul  相似文献   

15.
Zusammenfassung Die hier durchgeführten Untersuchungen erwiesen, daß die Thiazinfarbstoffe Azur B, Azur C und Thionin sowie der Chinolinfarbstoff Pinacyanol bzw. sein Hydrochlorid für die topooptische Reaktion am Plasmalemm geeignent sind.-Die an der Membranoberfläche orientiert gebundenen Farbstoffmoleküle werden durch eine nachträgliche Präzipitation stabilisiert und gleichzeitig wird der anisotrope Effekt verstärkt.-Die Thiazinfarbstoffmoleküle (Azur B, Azur C, Thionin) sind nach der optischen Analyse radiär zur Membran ausgerichtet.-Gegenüber dem früher untersuchten Chinolinfarbstoff N,N-Diäthylpseudoisocyaninchlorid, dessen Farbstoffmoleküle parallel zur Membran lagen, sind das Pinacyanol bzw. sein Hydrochlorid in gleicher Weise, wie die Thiazinfarbstoffe radiär zur Membran ausgerichtet.
The suitability of further thiazin and quinolin dyes for topo-optical reactions on the plasmalemma
Summary The present studies prove that the thiazin dyes, azure B, azure C and thionin, and the quinolin dyes pinacyanol and its hydrochloride, are suitable for topo-optical staining of the plasmalemma. On the membrane surface the orientated bound dye molecules become stabilized, and with subsequent precipitation the anisotropic effect is reinforced. On optical analysis, the thiazin dye molecules (azure B, azure C and Thionin) are bound radially on the membrane. The molecules of the previously studied quinolin dye, N,N-diethylpseudoisocyanide chloride are bound parallel to the membrane, while pinacyanol and its hydrochloride, like the thiazin dyes, are bound in the radial position.
  相似文献   

16.
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm−1 s−1, followed by rate-limiting ADP release at 12.8 s−1. ATP binding at 7.5 μm−1 s−1 was followed by an ATP-promoted isomerization at 84 s−1 to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s−1. ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s−1. The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm−1 s−1, which is inconsistent with fast ATP binding at 7.5 μm−1 s−1 and a Kd,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.  相似文献   

17.
If qk is the extinction probability of a slightly supercritical branching process with offspring distribution P kr : r = 0, 1, 2,..., then it is shown that if sup r r 3 p kr , < , inf 2 k > 0, and m k 1, then 1 – q k 2(m k –1) k –2, where m k = r rp kr , 2 k = k r r 2 p kr m k 2. This provides a simple set of sufficient conditions for the validity of a conjecture of Ewens (1969) for the survival probability of a slightly advantageous mutant gene.Research supported in part by NSF grants DMS-8803639 and DMS-9007182  相似文献   

18.
Fermentation of yoghurt and acidified milks containing aflatoxin B1 (AB1) were studied. AB1 added to milk before fermentation at concentrations of 600, 1000 and 1400 g/kg was reduced in yoghurts (pH 4.0) by 97, 91 and 90%, respectively. Coagulation time was approximately the same as in the controls. Streptococci had longer chains than those in the controls. The main decrease of AB1 occurred during the milk fermentation. A decrease of AB1 (conc. 1000 g/kg) in milks acidified with citric, lactic and acetic acids (pH 4.0) was 90, 84 and 73%, respectively.  相似文献   

19.
Summary A kinetic analysis of anion self-exchange in human red blood cells, in the presence of an irreversible inhibitor, is presented and applied to the study of the inactivation of sulfate transport by three isothiocyanates: 3-isothiocyano-1,5-naphthalenedisulfonic acid, disodium salt (INDS), 1-isothiocyano-4-naphthalene sulfonic acid, sodium salt, monohydrate (INS), and 1-isothiocyano-4-benzenesulfonic acid, sodium salt, monohydrate (IBS). The time dependence of the inhibition of sulfate transport by the isothiocyanates used could be described by a single exponential and could be shown to contain a reversible and an irreversible component. In each case a portion of sulfate efflux was found to be resistant to inactivation. The residual portion of the sulfate efflux varied with inhibition: 4% for INS, 16% for INDS, and 34% for IBS. INS showed the largest reversible inhibitory effect (12% of the flux remaining at 0.2mm inhibitor concentration), while INDS showed the weakest effect (92% of the flux remaining at 0.3mm inhibitor concentration). IBS had the highest rate of inactivation while INDS had the lowest. The kinetic analysis further suggests that all three isothiocyanates bind reversibly to an inhibitory site on the membrane before they bind covalently, and therefore irreversibly, to the same site on the membrane. The equilibrium constant for the dissociation of the reversibly-bound complex,K i, and the rate of irreversible inactivation after all membrane sites are reversibly bound,k max, have been computed for all three inhibitors: INDS (K i=420m,k max=5.04 hr–1), INS (K i=148 m,k max=6.48 hr–1), and IBS (K i=208 m,k max=8.11 hr–1).  相似文献   

20.
Summary A new, fast method is described to determine kLa either off-line, or on-line during animal-cell cultivation. Since it does not need the equilibrium concentration of oxygen in the liquid phase (C*), it is not required to await a new steady state. Furthermore, the results do not depend on the calibration value of the dissolved-oxygen probe. The method yielded accurate values for kLa, both for an oxygen-consuming and a non-consuming system.Nomenclature C L Dissolved-oxygen concentration [mol·m-3] - C * C L in equilibrium with the oxygen concentration in the gas phase [mol·m-3] - C L, Equilibrium oxygen concentration at stationary conditions [mol·m-3] - kLa Volumetric oxygen transfer coefficient [s-1] - r Specific oxygen consumption of biomass [mol·cell-1·s-1] - X Cell concentration [cells·m-3] - t Time [s] - Noise of dissolved-oxygen probe [mol·m-3] - Absolute error of kLa-measurement [s-1]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号