首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have constructed a simple, rapid and sensitive biosensor for detection of choline and acetylcholine (ACh) based on the hydrogen peroxide (H(2)O(2))-sensitive quantum dots (QDs). The detection limit for choline was 0.1 μM and the linear range was 0.1-0.9 μM and 5-150 μM, respectively. The detection limit for ACh was found to be 10 μM and the linear range was 10-5000 μM. The wide linear ranges were shown to be suitable for routine analyses of choline and ACh. Possible mechanism of the fluorescence of QDs quenched by H(2)O(2) was an electron transfer (ET) process. The experimental conditions of biosensors were optimized, and anti-interference ability was also presented. We also detected the choline in milk samples and the linear range was 5-150 μM. The detection linear range of ACh in serum was 10-140 μM. Most importantly, the recovery of choline in milk and ACh in serum samples were both close to 99%. The excellent performance of this biosensor showed that the method can be used in practice detection of choline and ACh.  相似文献   

2.
To identify new cost-effective prostaglandin D? (DP) receptor antagonists, a series of novel 3-benzoylaminophenylacetic acids were synthesized and biologically evaluated. Among those tested, some representative compounds were found to be orally available. Receptor selectivity and rat PK profiles were also evaluated. The structure-activity relationship (SAR) study is presented.  相似文献   

3.
The use of heavy water (D(2)O) as a solvent is commonplace in many spectroscopic techniques for the study of biological macromolecules. A significant deuterium isotope effect exists where hydrogen-bonding is important, such as in protein stability, dynamics and assembly. Here we illustrate the use of D(2)O in additive screening for the production of reproducible diffraction-quality crystals for the Salmonella enteritidis fimbriae 14 (SEF14) putative tip adhesin, SefD.  相似文献   

4.
Lu W  Luo Y  Chang G  Sun X 《Biosensors & bioelectronics》2011,26(12):4791-4797
In this paper, we report on the first preparation of well-defined SiO(2)-coated graphene oxide (GO) nanosheets (SiO(2)/GO) without prior GO functionalization by combining sonication with sol-gel technique. The functional SiO(2)/GO nanocomposites (F-SiO(2)/GO) obtained by surface functionalization with NH(2) group were subsequently employed as a support for loading Ag nanoparticles (AgNPs) to synthesize AgNP-decorated F-SiO(2)/GO nanosheets (AgNP/F-SiO(2)/GO) by two different routes: (1) direct adsorption of preformed, negatively charged AgNPs; (2) in situ chemical reduction of silver salts. The morphologies of these nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that the resultant AgNP/F-SiO(2)/GO exhibits remarkable catalytic performance for H(2)O(2) reduction. This H(2)O(2) sensor has a fast amperometric response time of less than 2s. The linear range is estimated to be from 1×10(-4) M to 0.26 M (r=0.998) and the detection limit is estimated to be 4 × 10(-6) M at a signal-to-noise ratio of 3, respectively. We also fabricated a glucose biosensor by immobilizing glucose oxidase (GOD) into AgNP/F-SiO(2)/GO nanocomposite-modified glassy carbon electrode (GCE) for glucose detection. Our study demonstrates that the resultant glucose biosensor can be used for the glucose detection in human blood serum.  相似文献   

5.
The chemical synthesis of 4-N-carboxybutyl-5-fluorocytosine (II) in solution phase starting from 5-fluorocytosine and the solid phase synthesis of Arg-Gln-Trp-Arg-Arg-Trp-Trp-Gln-Arg-NH(2) attached to the 4-N-carboxybutyl-5-fluorocytosine residue at the N-terminus of the peptide (III) via peptide bond formation is reported. The target compound exhibited a significant cytotoxic activity against a culture of HepG2 cells. In addition our results demonstrated that this new compound affect cell viability, produce mitochondrial dysfunction as well as interfere with intracellular calcium homeostasis control; leading to cell malfunction and death.  相似文献   

6.
Tocopheryl succinates (TOSs) are, in contrast to tocopherols, highly cytotoxic against many cancer cells. In this study the enzyme activity of secretory phospholipase A(2) towards various succinate-phospholipid conjugates has been investigated. The synthesis of six novel phospholipids is described, including two TOS phospholipids conjugates. The studies revealed that the TOS conjugates are poor substrates for the enzyme whereas the phospholipids with alkyl and phenyl succinate moieties were hydrolyzed by the enzyme to a high extent.  相似文献   

7.
Reactive oxygen species (ROS), normally generated in skeletal muscles, could control excitability of muscle fibers through redox modulation of membrane ion channels. However, the mechanisms of ROS action remain largely unknown. To investigate the action of ROS on electrical properties of muscle cells, patch-clamp recordings were performed after application of hydrogen peroxide (H2O2) to skeletal myotubes. H2O2 facilitated sodium spikes after a hyperpolarizing current pulse, by decreasing the latency for spike initiation. Importantly, the antioxidant N-acetylcysteine induced the opposite effect, suggesting the redox control of muscle excitability. The effect of H2O2 was abolished in the presence of catalase. The kinetics of sodium channels were not affected by H2O2. However, the fast inward rectifier K+ (KIR) currents, activated by hyperpolarization, were reduced by H2O2, similar to the action of the potassium channel blockers Ba2+ and Cs+. The block of the outward tail current contributing to KIR deactivation can explain the shorter latency for spike initiation. We propose that the KIR current is an important target for ROS action in myotubes. Our data would thus suggest that ROS are involved in the control of the excitability of myotubes and, possibly, in the oscillatory behavior critical for the plasticity of developing muscle cells.  相似文献   

8.
Ezrin is a membrane-cytoskeleton linker protein that can bind F-actin in its active conformation. Several means of regulation of ezrin's activity have been described including phosphorylation of Thr-567 and binding of L-α-phosphatidylinositol-4,5-bisphosphate (PIP2). However, the relative contributions of these events toward activation of the protein and their potential interdependence are not known. We developed an assay based on solid-supported membranes, to which different ezrin mutants (ezrin T567A (inactive mutant), wild-type, and T567D (active pseudophosphorylated mutant)) were bound, that enabled us to analyze the influence of phosphorylation and PIP2 binding on ezrin's activation state in vitro. The lipid bilayers employed contained either DOGS-NTA-Ni to bind the proteins via an N-terminal His-tag, or PIP2, to which ezrin binds via specific binding sites located in the N-terminal region of the protein. Quantitative analysis of the binding behavior of all three proteins to the two different receptor lipids revealed that all three bind with high affinity and specificity to the two receptor lipids. Fluorescence microscopy on ezrin-decorated solid-supported membranes showed that, dependent on the mode of binding and the phosphorylation state, ezrin is capable of binding actin filaments. A clear synergism between phosphorylation and the receptor lipid PIP2 was observed, suggesting a conformational switch from the dormant to the active, F-actin binding state by recognition of PIP2, which is enhanced by the phosphorylation.  相似文献   

9.
Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species modify cellular targets to induce neurotoxicity remains unknown. In this study, we determined the role of mitochondrial aconitase (m-aconitase) in neurotoxicity by decreasing its expression. Incubation of the rat dopaminergic cell line, N27, with paraquat (PQ(2+) ) resulted in aconitase inactivation, increased hydrogen peroxide (H(2) O(2) ) and increased ferrous iron (Fe(2+) ) at times preceding cell death. To confirm the role of m-aconitase in dopaminergic cell death, we knocked down m-aconitase expression via RNA interference. Incubation of m-aconitase knockdown N27 cells with PQ(2+) resulted in decreased H(2) O(2) production, Fe(2+) accumulation, and cell death compared with cells expressing basal levels of m-aconitase. To determine the metabolic role of m-aconitase in mediating neuroprotection, we conducted a complete bioenergetic profile. m-Aconitase knockdown N27 cells showed a global decrease in metabolism (glycolysis and oxygen consumption rates) which blocked PQ(2+) -induced H(+) leak and respiratory capacity deficiency. These findings suggest that dopaminergic cells are protected from death by decreasing release of H(2) O(2) and Fe(2+) in addition to decreased cellular metabolism.  相似文献   

10.
Leaf‐level measurements have shown that mesophyll conductance (gm) can vary rapidly in response to CO2 and other environmental factors, but similar studies at the canopy‐scale are missing. Here, we report the effect of short‐term variation of CO2 concentration on canopy‐scale gm and other CO2 exchange parameters of sunflower (Helianthus annuus L.) stands in the presence and absence of abscisic acid (ABA) in their nutrient solution. gm was estimated from gas exchange and on‐line carbon isotope discrimination (Δobs) in a 13CO2/12CO2 gas exchange mesocosm. The isotopic contribution of (photo)respiration to stand‐scale Δobs was determined with the experimental approach of Tcherkez et al. Without ABA, short‐term exposures to different CO2 concentrations (Ca 100 to 900 µmol mol?1) had little effect on canopy‐scale gm. But, addition of ABA strongly altered the CO2‐response: gm was high (approx. 0.5 mol CO2 m?2 s?1) at Ca < 200 µmol mol?1 and decreased to <0.1 mol CO2 m?2 s?1 at Ca >400 µmol mol?1. In the absence of ABA, the contribution of (photo)respiration to stand‐scale Δobs was high at low Ca (7.2‰) and decreased to <2‰ at Ca > 400 µmol mol?1. Treatment with ABA halved this effect at all Ca.  相似文献   

11.
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O? sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(?A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(?A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(?A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(?A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(?A) receptors play virtually no role in O? sensing by the carotid bodies, but brain A(?A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(?A) receptors have been implicated in O? sensing by carotid glomus cells, while central A(?A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(?A) receptors are crucially involved in the transduction mechanisms of O? sensing in fetal carotid bodies and brains. Postnatally, central A(?A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O? sensing in carotid chemoreceptors, particularly in developing lambs.  相似文献   

12.
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.  相似文献   

13.
β2‐Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β2‐microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β2‐microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β2‐microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis‐trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native‐like trans‐conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis‐trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β2‐microglobulin provides details of the binding modes of the drug and a rationale for its effect. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
In this report a full-length cDNA, SPCAT1, was isolated from ethephon-treated mature L3 leaves of sweet potato. SPCAT1 contained 1479 nucleotides (492 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 71.2-80.9%) with several plant catalases, including Arabidopsis, eggplant, grey mangrove, pea, potato, tobacco and tomato. Gene structural analysis showed that SPCAT1 encoded a catalase and contained a putative conserved internal peroxisomal targeting signal PTS1 motif and calmodulin binding domain around its C-terminus. RT-PCR showed that SPCAT1 gene expression was enhanced significantly in mature L3 and early senescent L4 leaves and was much reduced in immature L1, L2 and completely yellowing senescent L5 leaves. In dark- and ethephon-treated L3 leaves, SPCAT1 expression was significantly enhanced temporarily from 0 to 24 h, then decreased gradually until 72 h after treatment. SPCAT1 gene expression levels also exhibited approximately inverse correlation with the qualitative and quantitative H2O2 amounts. Effector treatment showed that ethephon-enhanced SPCAT1 expression was repressed by antioxidant reduced glutathione, NADPH oxidase inhibitor diphenylene iodonium (DPI), calcium ion chelator EGTA and de novo protein synthesis inhibitor cycloheximide. These data suggest that elevated reactive oxygen species H2O2, NADPH oxidase, external calcium influx and de novo synthesized proteins are required and associated with ethephon-mediated enhancement of sweet potato catalase SPCAT1 expression. Exogenous application of expressed catalase SPCAT1 fusion protein delayed or alleviated ethephon-mediated leaf senescence and H2O2 elevation. Based on these data we conclude that sweet potato SPCAT1 is an ethephon-inducible peroxisomal catalase, and its expression is regulated by reduced glutathione, DPI, EGTA and cycloheximide. Sweet potato catalase SPCAT1 may play a physiological role or function in cope with H2O2 homeostasis in leaves caused by developmental cues and environmental stimuli.  相似文献   

15.
André MJ 《Bio Systems》2011,103(2):239-251
In closed systems, the O2 compensation point (ΓO) was previously defined as the upper limit of O2 level, at a given CO2 level, above which plants cannot have positive carbon balance and survive. Studies with 18O2 measure the actual O2 uptake by photorespiration due to the dual function of Rubisco, the enzyme that fixes CO2 and takes O2 as an alternative substrate. One-step modelling of CO2 and O2 uptakes allows calculating a plant specificity factor (Sp) as the sum of the biochemical specificity of Rubisco and a biophysical specificity, function of the resistance to CO2 transfer from the atmosphere to Rubisco. The crossing points (Cx, Ox) are defined as CO2 and O2 concentrations for which O2 and CO2 uptakes are equal. It is observed that: (1) under the preindustrial atmosphere, photorespiration of C3 plants uses as much photochemical energy as photosynthesis, i.e. the Cx and Ox are equal or near the CO2 and O2 concentrations of that epoch; (2) contrarily to ΓC, a ΓO does not practically limit the plant growth, i.e. the plant net CO2 balance is positive up to very high O2 levels; (3) however, in a closed biosystem, ΓO exists; it is not the limit of plant growth, but the equilibrium point between photosynthesis and the opposite respiratory processes; (4) a reciprocal relationship exists between ΓO and ΓC, as unique functions of the respective CO2 and O2 concentrations and of Sp, this invalidates some results showing two different functions for ΓO and ΓC, and, consequently, the associated analyses related to greenhouse effects in the past; (5) the pre-industrial atmosphere levels of O2 and CO2 are the ΓO and ΓC of the global bio-system. They are equal to or near the values of Cx and Ox of C3 plants, the majority of land plants in preindustrial period. We assume that the crossing points represent favourable feedback conditions for the biosphere-atmosphere equilibrium and could result from co-evolution of plants-atmosphere-climate. We suggest that the evolution of Rubisco and associated pathways is directed by an optimisation between photosynthesis and photorespiration.  相似文献   

16.
Although the cellular function of group IVC phospholipase A(2) (IVC-PLA(2)) remains to be understood, the expression of IVC-PLA(2) in human monocytic THP-1 cells was increased during phorbol ester-induced macrophage differentiation. We therefore examined the role of IVC-PLA(2) in macrophage differentiation using THP-1 cells. Two THP-1 cell lines stably expressing IVC-PLA(2)-specific shRNA were established. Differentiation and maturation into macrophages on treatment with phorbol ester were facilitated by knockdown of IVC-PLA(2) without the compensatory induction of mRNA expression for other group IV and VI PLA(2)s. Furthermore, the enhancement of macrophage differentiation by IVC-PLA(2)-knockdown were abolished by treatment with lysophosphatidylcholine, a metabolite of phospholipids generated by PLA(2)-mediated hydrolysis, indicating that PLA(2) activity is necessary for the inhibition of macrophage differentiation by IVC-PLA(2). Additionally, we found that the differentiation into classically activated M1 macrophage was superior in IVC-PLA(2)-knockdown cells, whereas the differentiation into alternatively activated M2 macrophage was suppressed by IVC-PLA(2)-knockdown. These findings suggest that IVC-PLA(2) is involved in regulations of macrophage differentiation and macrophage polarization.  相似文献   

17.
Dubinsky AY  Ivlev AA 《Bio Systems》2011,103(2):285-290
The computational analysis of the model system consisting of the processes of CO2 assimilation and photorespiration shows the appearance of sustained oscillations in the system which might reflect their presence in photosynthesizing cells. Concentrations of CO2 and O2 oscillate in opposite phases causing Rubisco switching continuously between the carboxylase (CO2 assimilation) and the oxygenase (photorespiration) reactions. The results of modeling are consistent with carbon isotopic and other observed data. They show that the oscillation period varies from about 1 s to 3 s depending on the values of parameters taken. Too high concentrations of O2 suppress the oscillations.  相似文献   

18.
André MJ 《Bio Systems》2011,103(2):252-264
The studies of Rubisco characteristics observed during plant evolution show that the variation of the Rubisco specificity factor only improved by two times from cyanobacteria to modern C3 plants. However we note important variations of the ratio between the maximum rates of oxygenation and carboxylation (VO/VC). Modelling in vivo18O2 data in plant gas exchange shows that the oxygenation reaction of Rubisco plays a regulating role when the photochemical energy exceeds the carboxylation capacity. A protective index ‘oxygenation capacity’ is postulated, related to the ratio VO/VC of Rubisco, and hence to the sink energy effect of photorespiration. Analysing the trends of Rubisco parameters along the evolutionary scale, we show: (1) the increase of both VC and VO; (2) the enhancement of CO2 affinity; and (3) the rise in oxygenation capacity at the expense of the CO2 specificity. Hence, the factors of evolutionary pressure have not only directed the enzyme towards a more efficient utilisation of CO2, but mainly to positively use the unavoidable great loss of energy and assimilated carbon in the process of photorespiration. These observations reinforce the hypothesis of plant-atmosphere co-evolution and of the complex role of Rubisco, which seems to be selected to develop both better CO2 affinity and oxygenation capacity. The latter increases the capacity of sink of photorespiration, in particular, during water stress or under high irradiance, the two conditions experienced by plants in terrestrial environments. These observations help to explain some handicaps of C4 plants, and the supremacy of CAM and C3 perennial higher plants in arid environments.  相似文献   

19.
The purpose of this study was to quantify the physiological requirements of various boxing exercises such as sparring, pad work, and punching bag. Because it was not possible to measure the oxygen uptake (VO?) of "true" sparring with a collecting gas valve in the face, we developed and validated a method to measure VO? of "true" sparring based on "postexercise" measurements. Nine experienced male amateur boxers (Mean ± SD: age = 22.0 ± 3.5 years, height = 176.0 ± 8.0 cm, weight = 71.4 ± 10.9 kg, number of fights = 13.0 ± 9.5) of regional and provincial level volunteered to participate in 3 testing sessions: (a) maximal treadmill test in the LAB, (b) standardized boxing training in the GYM, and (c) standardized boxing exercises in the LAB. Measures of VO?, heart rate (HR), blood lactate concentration [LA], rated perceived exertion level, and punching frequencies were collected. VO? values of 43.4 ± 5.9, 41.1 ± 5.1, 24.7 ± 6.1, 30.4 ± 5.8, and 38.3 ± 6.5 ml·kg?1·min?1 were obtained, which represent 69.7 ± 8.0, 66.1 ± 8.0, 39.8 ± 10.4, 48.8 ± 8.5, and 61.7 ± 10.3%VO?peak for sparring, pad work, and punching bag at 60, 120, and 180 b·min?1, respectively. Except for lower VO? values for punching the bag at 60 and 120 b·min?1 (p < 0.05), there was no VO? difference between exercises. Similar pattern was obtained for %HRmax with respective values of 85.5 ± 5.9, 83.6 ± 6.3, 67.5 ± 3.5, 74.8 ± 5.9, and 83.0 ± 6.0. Finally, sparring %HRmax and [LA] were slightly higher in the GYM (91.7 ± 4.3 and 9.4 ± 2.2 mmol·L?1) vs. LAB (85.5 ± 5.9 and 6.1 ± 2.3 mmol·L?1). Thus, in this study simulated LAB sparring and pad work required similar VO? (43-41 ml·kg?1·min?1, respectively), which corresponds to ~70%VO?peak. These results underline the importance of a minimum of aerobic fitness for boxers and draw some guidelines for the intensity of training.  相似文献   

20.
The aim of the present study was to evaluate the potential of Turkish propolis extracts if they prevent or protect foreskin fibroblast cells against hydrogen peroxide (H?O?)-induced oxidative DNA damage. Hydrogen peroxide (40 μM) was used as an inducer of oxidative DNA damage. The damage of DNA was evaluated by using the alkaline single cell gel electrophoresis (comet) assay. Turkish propolis extracts at concentrations of 25, 50, 75 and 100 μg/ml were prepared by ethanol. Anti-genotoxicity was assessed before, simultaneously, and after treatment of propolis extract (50 μg/ml) with H?O?. The results showed a significant decrease in H?O?-induced DNA damage in cultures treated with propolis extract. The antioxidant activity of phenolic components found in propolis may contribute to reduce the DNA damage induced by H?O?. Our findings confirmed the chemopreventive activity of propolis and showed that this effect may occur under different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号