首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白激酶MEK1/2的专一抑制剂PD98059可抑制茉莉酸甲酯(MeJA)诱导的拟南芥保卫细胞中H2O2的产生和气孔的关闭.MeJA和H2O2诱导气孔关闭后,再用PD98059处理,可使关闭的气孔重新开放,同样,外源PD98059处理,能使MeJA诱导增强的H2O2探针的荧光强度降低.此结果表明,类属于MAPKK的蛋白激酶MEK1/2参与了MeJA诱导的拟南芥气孔关闭的信号转导过程,其作用机制可能是通过调节MeJA诱导保卫细胞产生和积累H2O2而起作用.  相似文献   

2.
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox‐sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard‐cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in‐gel electrophoresis and isotope‐coded affinity tagging. In total, 65 and 118 potential redox‐responsive proteins were identified in ABA‐ and MeJA‐treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra‐molecular disulfide bonds. Most of the proteins fall into the functional groups of ‘energy’, ‘stress and defense’ and ‘metabolism’. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA‐ and MeJA‐treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non‐fermenting 1‐related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox‐regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.  相似文献   

3.
Methyl jasmonate (MeJA) elicits stomatal closing similar to abscisic acid (ABA), but whether the two compounds use similar or different signaling mechanisms in guard cells remains to be clarified. We investigated the effects of MeJA and ABA on second messenger production and ion channel activation in guard cells of wild-type Arabidopsis (Arabidopsis thaliana) and MeJA-insensitive coronatine-insensitive 1 (coi1) mutants. The coi1 mutation impaired MeJA-induced stomatal closing but not ABA-induced stomatal closing. MeJA as well as ABA induced production of reactive oxygen species (ROS) and nitric oxide (NO) in wild-type guard cells, whereas MeJA did not induce production of ROS and NO in coi1 guard cells. The experiments using an inhibitor and scavengers demonstrated that both ROS and NO are involved in MeJA-induced stomatal closing as well as ABA-induced stomatal closing. Not only ABA but also MeJA activated slow anion channels and Ca(2+) permeable cation channels in the plasma membrane of wild-type guard cell protoplasts. However, in coi1 guard cell protoplasts, MeJA did not elicit either slow anion currents or Ca(2+) permeable cation currents, but ABA activated both types of ion channels. Furthermore, to elucidate signaling interaction between ABA and MeJA in guard cells, we examined MeJA signaling in ABA-insensitive mutant ABA-insensitive 2 (abi2-1), whose ABA signal transduction cascade has some disruption downstream of ROS production and NO production. MeJA also did not induce stomatal closing but stimulated production of ROS and NO in abi2-1. These results suggest that MeJA triggers stomatal closing via a receptor distinct from the ABA receptor and that the coi1 mutation disrupts MeJA signaling upstream of the blanch point of ABA signaling and MeJA signaling in Arabidopsis guard cells.  相似文献   

4.
Previous studies have demonstrated that methyl jasmonate (MeJA) induces stomatal closure dependent on change of cytosolic free calcium concentration in guard cells. However, these molecular mechanisms of intracellular Ca(2+) signal perception remain unknown. Calcium-dependent protein kinases (CDPKs) function as Ca(2+) signal transducers in various plant physiological processes. It has been reported that four Arabidopsis (Arabidopsis thaliana) CDPKs, CPK3, CPK6, CPK4, and CPK11, are involved in abscisic acid signaling in guard cells. It is also known that there is an interaction between MeJA and abscisic acid signaling in guard cells. In this study, we examined the roles of these CDPKs in MeJA signaling in guard cells using Arabidopsis mutants disrupted in the CDPK genes. Disruption of the CPK6 gene impaired MeJA-induced stomatal closure, but disruption of the other CDPK genes did not. Despite the broad expression pattern of CPK6, we did not find other remarkable MeJA-insensitive phenotypes in the cpk6-1 mutant. The whole-cell patch-clamp analysis revealed that MeJA activation of nonselective Ca(2+)-permeable cation channels is impaired in the cpk6-1 mutant. Consistent with this result, MeJA-induced transient cytosolic free calcium concentration increments were reduced in the cpk6-1 mutant. MeJA failed to activate slow-type anion channels in the cpk6-1 guard cells. Production of early signal components, reactive oxygen species and nitric oxide, in guard cells was elicited by MeJA in the cpk6-1 mutant as in the wild type. These results provide genetic evidence that CPK6 has a different role from CPK3 and functions as a positive regulator of MeJA signaling in Arabidopsis guard cells.  相似文献   

5.
Methyl jasmonate (MeJA)-induced stomatal closure is accompanied by the accumulation of hydrogen peroxide (H?O?) in guard cells. In this study, we investigated the roles of catalases (CATs) in MeJA-induced stomatal closure using cat mutants cat2, cat3-1 and cat1 cat3, and the CAT inhibitor, 3-aminotriazole (AT). When assessed with 2',7'-dichlorodihydrofluorescein, the reduction of catalase activity by means of mutations and the inhibitor accumulated higher basal levels of H?O? in guard cells whereas they did not affect stomatal aperture in the absence of MeJA. In contrast, the cat mutations and the treatment with AT potentiated MeJA-induced stomatal closure and MeJA-induced H?O? production. These results indicate that CATs negatively regulate H?O? accumulation in guard cells and suggest that inducible H?O? production rather than constitutive elevation modulates stomatal apertures in Arabidopsis.  相似文献   

6.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   

7.
Chen YL  Huang R  Xiao YM  Lü P  Chen J  Wang XC 《Plant physiology》2004,136(4):4096-4103
Extracellular calmodulin (ExtCaM) exerts multiple functions in animals and plants, but the mode of ExtCaM action is not well understood. In this paper, we provide evidence that ExtCaM stimulates a cascade of intracellular signaling events to regulate stomatal movement. Analysis of the changes of cytosolic free Ca2+ ([Ca2+]cyt) and H2O2 in Vicia faba guard cells combined with epidermal strip bioassay suggests that ExtCaM induces an increase in both H2O2 levels and [Ca2+]cyt, leading to a reduction in stomatal aperture. Pharmacological studies implicate heterotrimeric G protein in transmitting the ExtCaM signal, acting upstream of [Ca2+]cyt elevation, and generating H2O2 in guard cell responses. To further test the role of heterotrimeric G protein in ExtCaM signaling in stomatal closure, we checked guard cell responses in the Arabidopsis (Arabidopsis thaliana) Galpha-subunit-null gpa1 mutants and cGalpha overexpression lines. We found that gpa1 mutants were insensitive to ExtCaM stimulation of stomatal closure, whereas cGalpha overexpression enhanced the guard cell response to ExtCaM. Furthermore, gpa1 mutants are impaired in ExtCaM induction of H2O2 generation in guard cells. Taken together, our results strongly suggest that ExtCaM activates an intracellular signaling pathway involving activation of a heterotrimeric G protein, H2O2 generation, and changes in [Ca2+]cyt in the regulation of stomatal movements.  相似文献   

8.
Methyl jasmonate (MeJA) as well as abscisic acid (ABA) induces stomatal closure with their signal crosstalk. We investigated the function of a regulatory A subunit of protein phosphatase 2A, RCN1, in MeJA signaling. Both MeJA and ABA failed to induce stomatal closure in Arabidopsis rcn1 knockout mutants unlike in wild-type plants. Neither MeJA nor ABA induced reactive oxygen species (ROS) production and suppressed inward-rectifying potassium channel activities in rcn1 mutants but not in wild-type plants. These results suggest that RCN1 functions upstream of ROS production and downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

9.
Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca(2+) increases and ABA- activation of plasma membrane Ca(2+)-permeable channels in guard cells. Exogenous H(2)O(2) rescues both Ca(2+) channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction.  相似文献   

10.
Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions.On leaf surface,stomata formed by pairs of guard cells mediate gas exchange,water transp...  相似文献   

11.
NO可能作为H2O2的下游信号介导ABA诱导的蚕豆气孔关闭   总被引:24,自引:1,他引:23  
ABA、H2O2和硝普钠(SNP)均能诱导蚕豆气孔关闭.NO的清除剂c-PTIO可以减轻由ABA或H2O2所诱导的蚕豆气孔关闭的程度,而过氧化氢酶(CAT)则不能减轻NO诱导的气孔关闭程度.激光共聚焦显微检测结果显示,10μmo1/L的ABA处理后,胞内H2O2的产生速率明显高于NO的产生速率;CAT几乎可完全抑制ABA所诱导的DAF的荧光增加;外源H2O2能显著诱导胞内DAF的荧光增加;c-PTIO对ABA诱导的DCF荧光略有促进作用,但外源SNP不能诱导胞内DCF荧光增加.这些结果表明,在ABA诱导气孔关闭过程中,H2O2可能在NO的上游起作用并受NO的负反馈调节.  相似文献   

12.
Glutathione (GSH) has been shown to negatively regulate methyl jasmonate (MeJA)-induced stomatal closure. We investigated the roles of GSH in MeJA signaling in guard cells using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase. MeJA-induced stomatal closure and decreased GSH contents in guard cells. Decreasing GSH by the cad2-1 mutation enhanced MeJA-induced stomatal closure. Depletion of GSH by the cad2-1 mutation or increment of GSH by GSH monoethyl ester did not affect either MeJA-induced production of reactive oxygen species (ROS) or MeJA-induced cytosolic alkalization in guard cells. MeJA and abscisic acid (ABA) induced stomatal closure and GSH depletion in atrbohD and atrbohF single mutants but not in the atrbohD atrbohF double mutant. Moreover, exogenous hydrogen peroxide induced stomatal closure but did not deplete GSH in guard cells. These results indicate that GSH affects MeJA signaling as well as ABA signaling and that GSH negatively regulates a signal component other than ROS production and cytosolic alkalization in MeJA signal pathway of Arabidopsis guard cells.  相似文献   

13.
用激光扫描共聚焦显微技术,初步研究广谱性蛋白激酶抑制剂星型孢菌素(STS)对蚕豆气孔运动的调控效应.结果表明:(1)光下STS对气孔开度无影响但暗中显著促进气孔开放,表明蛋白激酶参与光/暗对气孔运动的调控,光下蛋白激酶活性低而暗中高;(2)与H2O2清除剂抗坏血酸(ASA)和NO清除剂羧基-2-苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)一样,STS既降低暗处理和光下外源H2O2、硝普钠(SNP)处理保卫细胞H2O2、NO水平,也促进气孔开放,表明暗中蛋白激酶通过抑制H2O2、NO清除机制提高保卫细胞内源H2O2、NO水平并促进气孔关闭.  相似文献   

14.
Methyl jasmonate (MeJA) induces stomatal closure similar to abscisic acid (ABA), and MeJA signaling in guard cells shares some signal components with ABA signaling. As part of this process, MeJA as well as ABA induce the elevation and oscillation of cytosolic free-calcium concentrations ([Ca2+]cyt) in guard cells. While abscisic acid-induced [Ca2+]cyt oscillation has been extensively studied, MeJA-induced [Ca2+]cyt oscillation is less well understood. In this study, we investigated the effects of K252a (a broad-range protein kinase inhibitor) and okadaic acid (OA, a protein phosphatase 1 and 2A inhibitor) on MeJA-induced [Ca2+]cyt oscillation in guard cells of Arabidopsis thaliana ecotype Columbia expressing the Ca2+ reporter yellow cameleon 3.6. The protein kinase inhibitor K252a abolished MeJA-induced stomatal closure and reduced MeJA-elicited [Ca2+]cyt oscillation. The protein phosphatase inhibitor OA, on the other hand, did not inhibit these processes. These results suggest that MeJA signaling involves activation of K252a-sensitive protein kinases upstream of [Ca2+]cyt oscillation but not activation of an OA-sensitive protein phosphatase in guard cells of A. thaliana ecotype Columbia.  相似文献   

15.
Under drought stress, ABA promotes stomatal closure to prevent water loss. Although protein phosphorylation plays an important role in ABA signaling, little is known about these processes at the biochemical level. In this study, we searched for substrates of protein kinases in ABA signaling through the binding of a 14-3-3 protein to phosphorylated proteins using Vicia guard cell protoplasts. ABA induced binding of a 14-3-3 protein to proteins with molecular masses of 61, 43 and 39 kDa, with the most remarkable signal for the 61 kDa protein. The ABA-induced binding to the 61 kDa protein occurred only in guard cells, and reached a maximum within 3 min at 1 microM ABA. The 61 kDa protein localized in the cytosol. ABA induced the binding of endogenous vf14-3-3a to the 61 kDa protein in guard cells. Autophosphorylation of ABA-activated protein kinase (AAPK), which mediates anion channel activation, and ABA-induced phosphorylation of the 61 kDa protein showed similar time courses and similar sensitivities to the protein kinase inhibitor K-252a. AAPK elicits the binding of the 14-3-3 protein to the 61 kDa protein in vitro when AAPK in guard cells was activated by ABA. The phosphorylation of the 61 kDa protein by ABA was not affected by the NADPH oxidase inhibitor, H(2)O(2), W-7 or EGTA. From these results, we conclude that the 61 kDa protein may be a substrate for AAPK and that the 61 kDa protein is located upstream of H(2)O(2) and Ca(2+), or on Ca(2+)-independent signaling pathways in guard cells.  相似文献   

16.
Zhang X  Zhang L  Dong F  Gao J  Galbraith DW  Song CP 《Plant physiology》2001,126(4):1438-1448
One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H(2)O(2)), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H(2)O(2) may function as an intermediate in ABA signaling in Vicia faba guard cells. H(2)O(2) inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10(-5) M. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H(2)O(2) scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H(2)O(2) was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H(2)O(2) production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H(2)O(2) production involved, and H(2)O(2) may be an intermediate in ABA signaling.  相似文献   

17.
Chen Z  Gallie DR 《The Plant cell》2004,16(5):1143-1162
H(2)O(2) serves an important stress signaling function and promotes stomatal closure, whereas ascorbic acid (Asc) is the major antioxidant that scavenges H(2)O(2). Dehydroascorbate reductase (DHAR) catalyzes the reduction of dehydroascorbate (oxidized ascorbate) to Asc and thus contributes to the regulation of the Asc redox state. In this study, we observed that the level of H(2)O(2) and the Asc redox state in guard cells and whole leaves are diurnally regulated such that the former increases during the afternoon, whereas the latter decreases. Plants with an increased guard cell Asc redox state were generated by increasing DHAR expression, and these exhibited a reduction in the level of guard cell H(2)O(2). In addition, a higher percentage of open stomata, an increase in total open stomatal area, increased stomatal conductance, and increased transpiration were observed. Guard cells with an increase in Asc redox state were less responsive to H(2)O(2) or abscisic acid signaling, and the plants exhibited greater water loss under drought conditions, whereas suppressing DHAR expression conferred increased drought tolerance. Our analyses suggest that DHAR serves to maintain a basal level of Asc recycling in guard cells that is insufficient to scavenge the high rate of H(2)O(2) produced in the afternoon, thus resulting in stomatal closure.  相似文献   

18.
保卫细胞的ABA信号转导   总被引:1,自引:0,他引:1  
植物激素脱落酸(ABA)调节植物体多种生理过程,尤其在一些逆境条件下,植物体中ABA大量合成,诱导气孔关闭,从而有效地调控植物体内的水分平衡.尽管人们对ABA诱导气孔关闭作用已得到共识,但有关信号转导的细节还很不清楚.该文简要介绍了研究气孔保卫细胞信号转导途径的相关技术以及与ABA信号转导直接相关的ABA受体、第二信使、蛋白质磷酸化和离子通道调节等方面的最新妍究进展.并在前人研究工作的基础上,勾画出气孔保卫细胞ABA、H2O2的信号转导模式图.  相似文献   

19.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

20.
Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor. Salicylic acid induced stomatal closure in mpk9 and mpk12 single mutants but not in mpk9 mpk12 double mutants. The MAPKK inhibitor PD98059 inhibited SA-induced stomatal closure in wild-type plants. Salicylic acid induced extracellular reactive oxygen species (ROS) production, intracellular ROS accumulation, and cytosolic alkalization in the mpk9, mpk12, and mpk9 mpk12 mutants. Moreover, SA-activated S-type anion channels in guard cells of wild-type plants but not in guard cells of mpk9 mpk12 double mutants. These results imply that MPK9 and MPK12 are positive regulators of SA signaling in Arabidopsis guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号