首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Certain thalassemic human beta-globin pre-mRNAs carry mutations that generate aberrant splice sites and/or activate cryptic splice sites, providing a convenient and clinically relevant system to study splice site selection. Antisense 2'-O-methyl oligoribonucleotides were used to block a number of sequences in these pre-mRNAs and were tested for their ability to inhibit splicing in vitro or to affect the ratio between aberrantly and correctly spliced products. By this approach, it was found that (i) up to 19 nucleotides upstream from the branch point adenosine are involved in proper recognition and functioning of the branch point sequence; (ii) whereas at least 25 nucleotides of exon sequences at both 3' and 5' ends are required for splicing, this requirement does not extend past the 5' splice site sequence of the intron; and (iii) improving the 5' splice site of the internal exon to match the consensus sequence strongly decreases the accessibility of the upstream 3' splice site to antisense 2'-O-methyl oligoribonucleotides. This result most likely reflects changes in the strength of interactions near the 3' splice site in response to improvement of the 5' splice site and further supports the existence of communication between these sites across the exon.  相似文献   

2.
The T-->G mutation at nucleotide 705 in the second intron of the beta-globin gene creates an aberrant 5' splice site and activates a 3' cryptic splice site upstream from the mutation. As a result, the IVS2-705 pre-mRNA is spliced via the aberrant splice sites leading to a deficiency of beta-globin mRNA and protein and to the genetic blood disorder thalassemia. We have shown previously that in cell culture models of thalassemia, aberrant splicing of beta-thalassemic IVS2-705 pre-mRNA was permanently corrected by a modified murine U7 snRNA that incorporated sequences antisense to the splice sites activated by the mutation. To explore the possibility of using other snRNAs as vectors for antisense sequences, U1 snRNA was modified in a similar manner. Replacement of the U1 9-nucleotide 5' splice site recognition sequence with nucleotides complementary to the aberrant 5' splice site failed to correct splicing of IVS2-705 pre-mRNA. In contrast, U1 snRNA targeted to the cryptic 3' splice site was effective. A hybrid with a modified U7 snRNA gene under the control of the U1 promoter and terminator sequences resulted in the highest levels of correction (up to 70%) in transiently and stably transfected target cells.  相似文献   

3.
4.
The report that human growth hormone pre-mRNA is not processed in transgenic plant tissues (A. Barta, K. Sommergruber, D. Thompson, K. Hartmuth, M.A. Matzke, and A.J.M. Matzke, Plant Mol. Biol. 6:347-357, 1986) has suggested that differences in mRNA splicing processes exist between plants and animals. To gain more information about the specificity of plant pre-mRNA processing, we have compared the splicing of the soybean leghemoglobin pre-mRNA with that of the human beta-globin pre-mRNA in transfected plant (Orychophragmus violaceus and Nicotiana tabacum) protoplasts and mammalian (HeLa) cells. Of the three introns of leghemoglobin pre-mRNA, only intron 2 was correctly and efficiently processed in HeLa cells. The 5' splice sites of the remaining two introns were faithfully recognized, but correct processing of the 3' sites took place only rarely (intron 1) or not at all (intron 3); cryptic 3' splice sites were used instead. While the first intron in human beta-globin pre-mRNA was not spliced in transfected plant protoplasts, intron 2 processing occurred at a low level, indicating that some mammalian introns can be recognized by the plant intron-splicing machinery. However, excision of intron 2 proved to be incorrect, involving the authentic 5' splice site and a cryptic 3' splice site. Our results indicate that the mechanism of 3'-splice-site selection during intron excision differs between plants and animals. This conclusion is supported by analysis of the 3'-splice-site consensus sequences in animal and plant introns which revealed that polypyrimidine tracts, characteristic of animal introns, are not present in plant pre-mRNAs. It is proposed that an elevated AU content of plant introns is important for their processing.  相似文献   

5.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

6.
Antisense RNA inhibits splicing of pre-mRNA in vitro.   总被引:17,自引:4,他引:13       下载免费PDF全文
S H Munroe 《The EMBO journal》1988,7(8):2523-2532
Antisense RNAs complementary to human beta-globin pre-mRNA or to a chimeric globin/adenovirus E2a pre-mRNA specifically and efficiently inhibit pre-mRNA splicing in vitro. The level of inhibition depends on the length, position and concentration of the antisense RNA relative to the pre-mRNA substrate. Antisense RNAs complementary to sequences greater than 80 nucleotides downstream of the globin 3' splice site inhibit at least as efficiently as those extending across the splice sites. Thus splicing is sensitive to perturbations involving exon sequences some distance from the splice sites. Inhibition is mediated by factors which affect the annealing of antisense and substrate RNAs. Direct analysis of RNA duplex formation demonstrates the presence of an activity in HeLa cell nuclear extract which promotes the rapid annealing of complementary RNAs in an ATP-independent manner. Both annealing and inhibition are greatly reduced when antisense RNA is added to the splicing reaction greater than or equal to 5 min after substrate. This result may reflect a transition between an open structure, in which annealing of antisense RNA with pre-mRNA is facilitated, and a closed complex in which pre-mRNA is sequestered at an early stage of spliceosome assembly.  相似文献   

7.
As demonstrated by RNase T1 protection assays at 0 degrees C without ATP, U1 and U5 snRNPs purified by isopycnic centrifugation in cesium chloride bind to the 5' and 3' splice sites of human beta-globin pre-mRNA, respectively. We also devised a saturation-complementation assay and have found that this purified U5 snRNP, unlike U1, successfully competes with snRNP-free fractions of nuclear proteins which inhibit spliceosome assembly and splicing. Restoration of activity requires intact U5 snRNA and correlates with the presence of the 100 Kd intron binding protein (IBP) which we have previously characterized (Tazi et al., 1986, Cell 47, 755-766). Our results are compatible with a model in which the recognition of the 3' splice site by IBP-U5 snRNP is one of the earliest events of the spliceosome assembly. It could organize the structure of the 3' splice site region of the human beta-globin like pre-mRNAs. However, on the basis of results showing that beta-globin and major late adenovirus seem to have different requirements with respect to IBP-U5 snRNP, it appears that some pre-mRNAs could have a native structure that necessitates less if at all IBP-U5.  相似文献   

8.
Processing of the beta major and beta minor globin pre-mRNAs has been compared in murine erythroleukemia cells induced to synthesize hemoglobin by dimethyl sulfoxide or hemin treatment, using both the Northern blot technique and S1 nuclease mapping with 3' and 5' end-labeled probes. The small intervening sequence of both beta-globin pre-mRNAs was removed in one step, although minor amounts of incompletely spliced RNA were detected. During the processing of the large intervening sequence of beta major globin pre-mRNA two internal splice sites were clearly detected. On the contrary, the beta minor globin pre-mRNA did not show any internal splice sites. A model of processing of the mouse adult beta major globin pre-mRNA is proposed.  相似文献   

9.
J Ct  B Chabot 《RNA (New York, N.Y.)》1997,3(11):1248-1261
In the murine gene encoding the neuronal cell adhesion molecule (NCAM), the integrity of the 5' splice site of exon 18 (E18) is essential for regulation of alternative splicing. To further study the contribution of 5' splice site sequences, we used a simple NCAM pre-mRNA containing a portion of E18 fused to E19 and separated by a shortened intron. This RNA is spliced in vitro to produce five sets of lariat intermediates and products, the most abundant set displaying aberrant migration in acrylamide/urea gels. Base pairing interactions between positions +5 and +8 of the intron and positions -3 and -6 from the branch point were responsible for the faster migration of this set of lariat molecules. To test whether the duplex structure forms earlier and contributes to 5' splice site selection, we used NCAM substrates carrying the 5' splice sites of E17 and E18 in competition for the 3' splice site of E19. Mutations upstream of the major branch site improve E18/E19 splicing in NIH3T3 extracts, whereas compensatory mutations at positions +7 and +8 neutralize the effect of branch site mutations and curtail E18/E19 splicing. Our data suggest that duplex formation occurs early and interferes with the assembly of complexes initiated on the 5' splice site of NCAM E18. This novel type of intron interaction may exist in the introns of other mammalian pre-mRNAs.  相似文献   

10.
Using a protein blotting method for the detection of nucleic acid binding proteins, we have identified in HeLa cell nuclear extracts an intron binding protein (IBP) that selectively recognizes the 3' splice site region of mammalian pre-mRNAs. The binding site was accurately delineated using oligonucleotides complementary to human beta-globin pre-mRNA. It spans the 3' splice site AG dinucleotide and the crucial polypyrimidine stretch upstream, but includes neither the branchpoint nor the lariat structure. Although the technique used here shows that the binding specificity is an intrinsic property of IBP and does not depend on snRNA-pre-mRNA interactions, it comigrates with U5 snRNP and is immunoprecipitated by anti-Sm antibody. This strongly suggests that IBP belongs to U5 snRNP. We propose that it is involved in one of the earliest steps of the splicing reaction by mediating the interaction of U5 snRNP with the 3' splice site.  相似文献   

11.
A T→G mutation at nucleotide 705 of human β-globin intron 2 creates an aberrant 5′ splice site and activates a cryptic 3′ splice site upstream. In consequence, the pre-mRNA is spliced via aberrant splice sites, despite the presence of the still functional correct sites. Surprisingly, when IVS2-705 HeLa or K562 cells were cultured at temperatures below 30°C, aberrant splicing was inhibited and correct splicing was restored. Similar temperature effects were seen for another β-globin pre-mRNA, IVS2-745, and in a construct in which a β-globin intron was inserted into a coding sequence of EGFP. Temperature-induced alternative splicing was affected by the nature of the internal aberrant splice sites flanking the correct sites and by exonic sequences. The results indicate that in the context of thalassemic splicing mutations and possibly in other alternatively spliced pre-mRNAs, temperature is one of the parameters that affect splice site selection.  相似文献   

12.
13.
A R Krainer  G C Conway  D Kozak 《Cell》1990,62(1):35-42
SF2 is a 33 kd protein factor required for 5' splice site cleavage and lariat formation during pre-mRNA splicing in HeLa cell extracts. In addition to its essential role in constitutive splicing, SF2 can strongly influence 5' splice site selection. When pre-mRNAs containing multiple cis-competing 5' splice sites are spliced in vitro, high concentrations of purified SF2 promote the use of the 5' splice site closest to the 3' splice site. However, SF2 discriminates properly between authentic and cryptic splice sites. These effects of SF2 on splice site selection may reflect the cellular mechanisms that prevent exon skipping and ensure the accuracy of splicing. In addition, alterations in the concentration or activity of SF2, and of other general splicing factors, may serve to regulate alternative splicing in vivo.  相似文献   

14.
Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3' splice site utilization from an early 3' splice site at nucleotide (nt) 3225 to a late-specific 3' splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3' splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3' splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3' splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3' splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3' splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3' splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3' splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3' splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3' splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3' splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.  相似文献   

15.
Exon mutations uncouple 5' splice site selection from U1 snRNA pairing   总被引:16,自引:0,他引:16  
B Séraphin  M Rosbash 《Cell》1990,63(3):619-629
It has previously been shown that a mutation of yeast 5' splice junctions at position 5 (GUAUGU) causes aberrant pre-mRNA cleavages near the correct 5' splice site. We show here that the addition of exon mutations to an aberrant cleavage site region transforms it into a functional 5' splice site both in vivo and in vitro. The aberrant mRNAs are translated in vivo. The results suggest that the highly conserved G at the 5' end of introns is necessary for the second step of splicing. Further analyses indicate that the location of the U1 snRNA-pre-mRNA pairing is not affected by the exon mutations and that the precise 5' splice site is selected independent of this pairing.  相似文献   

16.
Splice site selection is a key element of pre-mRNA splicing and involves specific recognition of consensus sequences at the 5(') and 3(') splice sites. Evidently, the compliance of a given sequence with the consensus 5(') splice site sequence is not sufficient to define it as a functional 5(') splice site, because not all sequences that conform with the consensus are used for splicing. We have previously hypothesized that the necessity to avoid the inclusion of premature termination codons within mature mRNAs may serve as a criterion that differentiates normal 5(') splice sites from unused (latent) ones. We further provided experimental support to this idea, by analyzing the splicing of pre-mRNAs in which in-frame stop codons upstream of a latent 5(') splice site were mutated, and showing that splicing using the latent site is indeed activated by such mutations. Here we evaluate this hypothesis by a computerized survey for latent 5(') splice sites in 446 protein-coding human genes. This data set contains 2311 introns, in which we found 10490 latent 5(') splice sites. The utilization of 10045 (95.8%) of these sites for splicing would have led to the inclusion of an in-frame stop codon within the resultant mRNA. The validity of this finding is confirmed here by statistical analyses. This finding, together with our previous experimental results, invokes a nuclear scanning mechanism, as part of the splicing machine, which identifies in-frame stop codons within the pre-mRNA and prevents splicing that could lead to the formation of a prematurely terminated protein.  相似文献   

17.
TIA-1 has recently been shown to activate splicing of specific pre-mRNAs transcribed from transiently transfected minigenes, and of some 5' splice sites in vitro, but has not been shown to activate splicing of any endogenous pre-mRNA. We show here that overexpression of TIA-1 or the related protein TIAR has little effect on splicing of several endogenous pre-mRNAs containing alternative exons, but markedly activates splicing of some normally rarely used alternative exons on the TIA-1 and TIAR pre-mRNAs. These exons have weak 5' splice sites followed by U-rich stretches. When the U-rich stretch following the 5' splice site of a TIA-1 alternative exon was deleted, TIAR overexpression induced use of a cryptic 5' splice site also followed by a U-rich stretch in place of the original splice site. Using in vitro splicing assays, we have shown that TIA-1 is directly involved in activating the 5' splice sites of the TIAR alternative exons. Activation requires a downstream U-rich stretch of at least 10 residues. Our results confirm that TIA-1 activates 5' splice sites followed by U-rich sequences and show that TIAR exerts a similar activity. They suggest that both proteins may autoregulate their expression at the level of splicing.  相似文献   

18.
Single nucleotide changes to the sequence between two alternative 5' splice sites, separated by 25 nucleotides in a beta-globin gene derivative, caused substantial shifts in pre-mRNA splicing preferences, both in vivo and in vitro. An activating sequence for splicing was located. Models for the recognition by U1 small nuclear ribonucleoproteins (snRNPs) of competing 5' splice sites were tested by altering the distance separating the two sites. Use of the upstream splice site declined sharply when it was separated from the downstream (natural) site by distances of 40 nucleotides or more. This effect was reversed in vivo, but not in vitro, by altering the upstream sequence to that of a consensus 5' splice site sequence. Dilution of an extract used for splicing in vitro shifted preferences when the sites were close towards the downstream site. We conclude that the mechanism of selection depends on the distance apart of the potential splice sites and that with close sites steric interference between factors bound to both sites may impede splicing and affect splicing preferences.  相似文献   

19.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder associated with gastrointestinal polyposis and an increased cancer risk. PJS is caused by germline mutations in the tumor suppressor gene LKB1. One such mutation, IVS2+1A>G, alters the second intron 5' splice site, which has sequence features of a U12-type AT-AC intron. We report that in patients, LKB1 RNA splicing occurs from the mutated 5' splice site to several cryptic, noncanonical 3' splice sites immediately adjacent to the normal 3' splice site. In vitro splicing analysis demonstrates that this aberrant splicing is mediated by the U12-dependent spliceosome. The results indicate that the minor spliceosome can use a variety of 3' splice site sequences to pair to a given 5' splice site, albeit with tight constraints for maintaining the 3' splice site position. The unusual splicing defect associated with this PJS-causing mutation uncovers differences in splice-site recognition between the major and minor pre-mRNA splicing pathways.  相似文献   

20.
Exon 7B in the hnRNP A1 pre-mRNA is alternatively spliced to yield A1 and A1(B), two proteins that differ in their ability to modulate 5' splice site selection. Sequencing the murine intron downstream of exon 7B revealed the existence of several regions of similarity to the corresponding human intron. In vitro splicing assays indicate that an 84-nt region (CE6IO) decreases splicing to the proximal 5' splice site in a pre-mRNA carrying the 5' splice sites of exon 7 and 7B. In vivo, the CE6IO element promotes exon 7B skipping in pre-mRNAs expressed from a mini-gene containing the hnRNP A1 alternative splicing unit. Using oligonucleotide-targeted RNase H cleavage assays, we provide support for the existence of highly stable base pairing interactions between CE6IO and the 5' splice site region of exon 7B. Duplex formation occurs in naked pre-mRNA, resists incubation in splicing extracts, and is associated with a reduction in the assembly of U1 snRNP-dependent complexes to the 5' splice site of exon 7B. Our results demonstrate that pre-mRNA secondary structure plays an important role in promoting exon 7B skipping in the A1 pre-mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号