首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary A flocculent strain ofZymomonas mobilis (ZM4F JM1) was isolated in continuous culture. The parent strain, ZM4F, had lost its flocculating properties. The isolation was done in a conical fermentor at high dilution rate. Ethanol production by the new strain was then compared on a rich and mineral medium. The mineral medium showed high performance and could be used for industrial production of ethanol since it reduced one hundred fold the vitamin cost of the fermentation.  相似文献   

3.
4.
A mutant of Zymomonas mobilis with an increased content of tetrahydroxybacteriohopane (THBH) was isolated. From comparisons of hopanoids of THBH, a glucosamine and an ether derivative of THBH between the parent strain, THBH-decreased and THBH-increased mutants, the biosynthetic pathway of the side-chain of these hopanoids is discussed.  相似文献   

5.
By thin layer chromatographic, gas-liquid chromatographic, and mass spectrometric methods 1,2,3,4-tetrahydroxypentane-29-hopane (THBH) was shown to occur in Zymomonas mobilis. This compound contributed up to 20% to the total lipids.The fatty acid pattern and the content of hopanoids (hopene, hopanol, and THBH) were determined in batch and continuous cultures. In late exponential cells from batch cultures the relative amount of palmitic acid was increased partially at the expense of cis-vaccenic acid, when the initial glucose concentrations were increased. In a batch culture, THBH reached a maximum value in the early exponential growth phase.In an anaerobic continuous culture with a low glucose feed concentration, the THBH content and the relative amount of cis-vaccenic acid were low. The contribution of both compounds increased strongly with increasing glucose feed concentrations (i.e. at higher steady-state ethanol concentrations). The same result was found with aerobic continuous cultures which produced significant amounts of acetaldehyde and acetic acid, in addition to ethanol and carbon dioxide.It was concluded that stability and permeability of the cytoplasmic membrane of the ethanol producing bacterium Z. mobilis was regulated by variations in the distribution of hopanoids and fatty acids.Abbreviations 14:0 myristic acid - 16:0 palmitic acid - 18:1 cisvaccenic acid - THBH 1,2,3,4-tetrahydroxypentane-29-hopane  相似文献   

6.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

7.
Zymomonas mobilis ZM401 is a flocculating strain which can be self-immobilized within fermentors for a high-cell-density culture to improve ethanol productivity, as well as high-gravity fermentation to increase ethanol titer, due to its improved ethanol tolerance associated with the morphological change. Here, we report its draft genome sequence.  相似文献   

8.
Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial‐derived liposomes showed that hopanoids protect against several ethanol‐driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter‐lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.  相似文献   

9.
Lignocellulose pretreatment produces various toxic inhibitors that affect microbial growth, metabolism, and fermentation. Zymomonas mobilis is an ethanologenic microbe that has been demonstrated to have potential to be used in lignocellulose biorefineries for bioethanol production. Z. mobilis biofilm has previously exhibited high potential to enhance ethanol production by presenting a higher viable cell number and higher metabolic activity than planktonic cells or free cells when exposed to lignocellulosic hydrolysate containing toxic inhibitors. However, there has not yet been a systematic study on the tolerance level of Z. mobilis biofilm compared to planktonic cells against model toxic inhibitors derived from lignocellulosic material. We took the first insight into the concentration of toxic compound (formic acid, acetic acid, furfural, and 5‐HMF) required to reduce the metabolic activity of Z. mobilis biofilm and planktonic cells by 25% (IC25), 50% (IC50), 75% (IC75), and 100% (IC100). Z. mobilis strains ZM4 and TISTR 551 biofilm were two‐ to three fold more resistant to model toxic inhibitors than planktonic cells. Synergetic effects were found in the presence of formic acid, acetic acid, furfural, and 5‐HMF. The IC25 of Z. mobilis ZM4 biofilm and TISTR 551 biofilm were 57 mm formic acid, 155 mm acetic acid, 37.5 mm furfural and 6.4 mm 5‐HMF, and 225 mm formic acid, 291 mm acetic acid, 51 mm furfural and 41 mm 5‐HMF, respectively. There was no significant difference found between proteomic analysis of the stress response to toxic inhibitors of Z. mobilis biofilm and planktonic cells on ZM4. However, TISTR 551 biofilms exhibited two proteins (molecular chaperone DnaK and 50S ribosomal protein L2) that were up‐regulated in the presence of toxic inhibitors. TISTR 551 planktonic cells possessed two types of protein in the group of 30S ribosomal proteins and motility proteins that were up‐regulated.  相似文献   

10.
Zymomonas mobilis (ATCC 29191) was grown either aerobically or anaerobically in the presence of 2% (wt/vol) glucose and 0, 3, or 6% (vol/vol) ethanol. The rates of growth and the composition of hopanoids, cellular fatty acids, and other lipids in the bacterial membranes were quantitatively analyzed. The bacterium grew in the presence of 3% and 6% ethanol and was more ethanol tolerant when grown anaerobically. In the absence of ethanol, hopanoids comprised about 30% (by mass) of the total cellular lipids. Addition of ethanol to the media caused complex changes in the levels of hopanoids and other lipids. However, there was not a significant increase in any of the hopanoid lipid classes as ethanol concentration was increased. As previously reported, vaccenic acid was the most abundant fatty acid in the lipids of Z. mobilis, and its high constitutive levels were unaffected by the variations in ethanol and oxygen concentrations. A cyclopropane fatty acid accounted for 2.6–6.4 wt % of the total fatty acids in all treatments. Received: 12 November 1996 / Accepted: 25 February 1997  相似文献   

11.
Summary Zymomonas mobilis strain ZM4 was used for ethanol production from fructose (100 g/l) in continuous culture with a mineral (containing Ca pantothenate) or a rich (containing yeast extract) mediium. With both media high conversion yields were observed but the ethanol productivity was limited by the low biomass content of the fermentor. A new flocculent strain of Z.mobilis (ZM4F) was cultivated in a CSTR with an internal settler and showed a maximal productivity of 93 g/l.h (fructose conversion of 80%). When the fructose conversion was 96% an ethanol productivity of 85.6 g/l.h with an ethanol yield of 0.49 g/g (96% of theoretical) was observed.  相似文献   

12.
Summary Nitrosoguanidine-induced, stable theromotolerant mutant (ZMI2) ofZymomonas mobilis ZM4 was found to possess almost normal cell morphology, and a better ethanol tolerance at 42°C than the parent strain (ZM4). Its kinetic parameters, in converting different concentrations of glucose to ethanol, were comparable to ZM4 at 30°C, and significantly superior at 42°C. In a 200 g/L glucose medium in a pH-stat (5.0) at 42°C, the mutant yielded more ethanol (71.0 g/L) (improved to 73.7 g/L at pH 5.5) and alcohol dehydrogenase (ADH) than the parent strain. The ADH levels in both the strains were repressed, depending upon the increased level of sugar and degree of temperature.  相似文献   

13.
Summary This paper describes the ethanol tolerance and metabolism of 31 strains ofLactobacillus on glucose, xylose, lactose, cellobiose and starch. The purpose of this work was to determine the suitability of the 31 strains as potential host for the ethanol producing genes, pyruvate decarboxylase and aldehyde dehydrogenase, fromZymomonas mobilis. The 31 strains were screened for their ability to grow in 0 to 8% v/v ethanol on all five carbohydrates. Those strains that were able to grow to an OD of 1.0 in 8% ethanol were evaluated at ethanol concentrations up to 16%. v/v. The fermentative products from the five carbohydrates were analyzed to determine the ratios of lactic acid, ethanol, and acetic acid.Published as Paper No. 9786, Journal Series Nebraska Agricultural Experiment Station, Lincoln, NE 68583-0704.  相似文献   

14.
Zymomonas mobilis ZM3 was flocculated with a synthetic polyelectrolyte and titanium hydrous oxide. Continuous culture on a glucose medium in a gaslift tower reactor with internal recycle resulted in a stable production of 70 g/l ethanol, with an 8 fold increase in productivity compared to a similar free cell culture.  相似文献   

15.

Background  

Zymomonas mobilis ZM4 is a Gram-negative bacterium that can efficiently produce ethanol from various carbon substrates, including glucose, fructose, and sucrose, via the Entner-Doudoroff pathway. However, systems metabolic engineering is required to further enhance its metabolic performance for industrial application. As an important step towards this goal, the genome-scale metabolic model of Z. mobilis is required to systematically analyze in silico the metabolic characteristics of this bacterium under a wide range of genotypic and environmental conditions.  相似文献   

16.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

17.
A model has been developed for the fermentation of mixtures of glucose and xylose by recombinant Zymomonas mobilis strain ZM4(pZB5), containing additional genes for xylose assimilation and metabolism. A two-substrate model based on substrate limitation, substrate inhibition, and product (ethanol) inhibition was evaluated, and experimental data was compared with model simulations using a Microsoft EXCEL based program and methods of statistical analysis for error minimization. From the results it was established that the model provides good predictions of experimental batch culture data for 25/25, 50/50, and 65/65 g l–1 glucose/xylose media.  相似文献   

18.
Traditional fermentation of paddy malt mash (containing 18.1% w/v dextrose equivalent) to paddy arrack using paddy husk as source of inoculum yielded very low level of ethanol (4.25% v/v). Use of yeast isolates obtained from paddy husk as well as a potent ethanol producer like Zymomonas mobilis ZM4 and their combinations in the fermentation revealed that a combination of an yeast isolate PH 03 (Saccharomyces cerevisiae) and Z. mobilis ZM4 produced synergistically and statistically more ethanol (10.1% v/v) than the individual and other combination of cultures. In this process, addition of penicillin G at a concentration of 20 U/ml rather than heat sterilization, helped retention of the limited amylase activity in the mash for simultaneous saccharification and fermentation over 7 d at 30°C. About 98.5% of the carbohydrate was accountable in the fermentation which yielded 86.7% of the theoretical yield of ethanol, apart from biomass and acids.  相似文献   

19.
Summary Wild-type strains ofZymomonas mobilis have a limited substrate range of glucose, fructose and sucrose. In order to expand this substrate range, transconjugants ofZ. mobilis containing Lac+ plasmids have been constructed. Although -galactosidase is expressed in such strains, they lack the ability to grow on lactose. We now report the development ofZ. mobilis strains capable of growth on lactose. This was achieved in two stages. First, a broad host range plasmid was constructed (pRUT102) which contained the lactose operon under the control of aZ. mobilis promoter plus genes for galactose utilization.Z. mobilis CP4.45 containing pRUT102 was then subjected to mutagenesis combined with continued selection pressure for growth on lactose. One strain,Z. mobilis SB6, produced a turbid culture that yielded 0.25% ethanol from 5% lactose (plus 2% yeast extract) in 15 days.  相似文献   

20.
He MX  Feng H  Zhang YZ 《Biotechnology letters》2008,30(12):2111-2117
A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed β-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant β-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号