首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are currently being evaluated.  相似文献   

2.
Emerging data indicate that gut-derived endotoxin (metabolic endotoxemia) may contribute to low-grade systemic inflammation in insulin-resistant states. Specific gut bacteria seem to serve as lipopolysaccharide (LPS) sources and several reports claim a role for increased intestinal permeability in the genesis of metabolic disorders. Therefore, we investigated the serum levels of LPS and zonulin (ZO-1, a marker of gut permeability) along with systemic levels of tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) in patients with type 2 diabetes mellitus (T2DM) compared to control subjects. Study subjects were recruited from the Chennai Urban Rural Epidemiology Study [CURES], Chennai, India. Study group (n = 45 each) comprised of a) subjects with normal glucose tolerance (NGT) and (b) patients with T2DM. LPS, ZO-1, TNF-α, and IL-6 levels were measured by ELISA. Serum levels of LPS [p < 0.05], LPS activity [p < 0.001], ZO-1 [p < 0.001], TNFα [p < 0.001], and IL-6 [p < 0.001] were significantly increased in patients with T2DM compared to control subjects. Pearson correlation analysis revealed that LPS activity was significantly and positively correlated with ZO-1, fasting plasma glucose, 2 h post glucose, HbA1c, serum triglycerides, TNF-α, IL-6, and negatively correlated with HDL cholesterol. Regression analysis showed that increased LPS levels were significantly associated with type 2 diabetes [odds ratio (OR) 13.43, 95 % CI 1.998–18.9; p = 0.003]. In Asian Indians who are considered highly insulin resistant, the circulatory LPS levels, LPS activity, and ZO-1 were significantly increased in patients with type 2 diabetes and showed positive correlation with inflammatory markers and poor glycemic/lipid control.  相似文献   

3.
Lipopolysaccharides (LPS) were obtained by washing cells of plant pathogenic and saprophytic Pseudomonas species with saline (fraction 1) and then with saline-EDTA (fraction 2). The cells subsequently were extracted with phenol to yield a third aqueous preparation (fraction 3). Each fraction type contained the LPS components, lipid A, heptose, 2-keto-3-deoxy sugar, and neutral and amino sugars. The neutral sugar compositions of fractions 1, 2, and 3, although similar within a species, differed between the Pseudomonas species. The LPS of two pathovars (pv.) of Pseudomonas syringae had glucose and rhamnose as major components: 13 (±3)% glucose and 87 (±3)% rhamnose for P. syringae pv. pisi and 18 (±5)% glucose and 76 (±2)% rhamnose for P. syringae pv. syringae. Fucose was present in addition to glucose and rhamnose for P. syringae pv. phaseolicola (68 [±8]% rhamnose, 14 [±1]% fucose, and 14 [±5]% glucose) and P. syringae pv. tabaci (24 [±2]% rhamnose, 54 [±3]% fucose, and 17 [±1]% glucose). The LPS from different races of P. syringae pv. pisi and P. syringae pv. phaseolicola could not be distinguished by neutral sugar composition. Three saprophytic species, P. aeruginosa, P. fluorescens, and P. putida, also produced LPS which had different proportions of rhamnose, fucose, and glucose. The LPS from three isolates of P. putida were distinct in possessing a high proportion of amino sugar and containing glucose as the major neutral sugar component (86 to 100%). The LPS fractions from plant pathogenic and saprophytic Pseudomonas species did not elicit browning or phytoalexin production in treated dark red kidney bean cotyledons or red Mexican bean leaves. Rather, chlorosis of the LPS-treated leaf tissue was observed.  相似文献   

4.
We report here initial studies on d-lactate metabolism in Jerusalem artichoke. It was found that: 1) d-lactate can be synthesized by Jerusalem artichoke by virtue of the presence of glyoxalase II, the activity of which was measured photometrically in both isolated Jerusalem artichoke mitochondria and cytosolic fraction after the addition of S-d-lactoyl-glutathione. 2) Externally added d-lactate caused oxygen consumption by mitochondria, mitochondrial membrane potential increase and proton release, in processes that were insensitive to rotenone, but inhibited by both antimycin A and cyanide. 3) d-lactate was metabolized inside mitochondria by a flavoprotein, a putative d-lactate dehydrogenase, the activity of which could be measured photometrically in mitochondria treated with Triton X-100. 4) Jerusalem artichoke mitochondria can take up externally added d-lactate by means of a d-lactate/H+ symporter investigated by measuring the rate of reduction of endogenous flavins. The action of the d-lactate translocator and of the mitochondrial d-lactate dehydrogenase could be responsible for the subsequent metabolism of d-lactate formed from methylglyoxal in the cytosol of Jerusalem artichoke.  相似文献   

5.
Summary A group of ompA mutants of Escherichia coli K12 are described which were sensitive to bacteriophage K3 in a background wild-type for lipopolysaccharide (LPS). With mutant LPS in vivo (lacking some core sugar residues), however, the ompA mutations gave resistance to K3. Outer membrane levels of OmpA protein were normal or near-normal when the mutations resided in either wild-type or mutant LPS backgrounds. Strains in which the mutations occurred in a wild-type LPS background adsorbed K3 phage at the same initial rate and to the same extent as a wild-type strain, but the efficiency of plaquing of the adsorbed K3 was reduced to 25–50% of wild-type levels. Under conditions where a wild-type strain irreversibly adsorbed over 90% of available phage K3 within 3 min, double mutants (ompA mutant, LPS mutant) left 90% of the phage viable after 1h. The 10% of inactivated phage did not form plaques.  相似文献   

6.
《Process Biochemistry》2014,49(12):2071-2077
Lactate is an important industrial material with numerous potential applications, and its production from carbon dioxide is very attractive. d-Lactate is an essential monomer for production of thermostable polylactide. The photoautotrophic prokaryote cyanobacterium Synechocystis sp. PCC 6803 represents a promising host for biosynthesis of d-lactate from CO2 as it only contains d-lactate dehydrogenase. The production of d-lactate from CO2 by an engineered strain of Synechocystis sp. PCC 6803 with overexpressing d-lactate dehydrogenase and a soluble transhydrogenase has been reported recently. Here, we report an alternative engineering strategy to produce d-lactate from CO2. This strategy involves blocking two competitive pathways, the native poly-3-hydroxybutyrate and acetate pathways from the acetyl-CoA node, and introducing a more efficient d-lactate dehydrogenase into Synechocystis sp. PCC 6803. The engineered strain of Synechocystis sp. PCC 6803 was capable of producing 1.06 g/L of d-lactate from CO2. This alternative strategy for the production of optically pure d-lactate could also be used to produce other acetyl-CoA-derived chemicals from CO2 by using engineered cyanobacteria.  相似文献   

7.

Background

Patients with early-stage lung cancer who have a high baseline lymphocyte-to-monocyte ratio (LMR) have a favorable prognosis. However, the prognostic significance of LMR in patients with advanced-stage EGFR-mutant non-small cell lung cancer (NSCLC) receiving first-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has not been established. We conducted a retrospective analysis to investigate the influence of LMR on clinical outcomes including progression-free survival (PFS) and overall survival (OS) in EGFR-mutant patients with NSCLC.

Materials and Methods

Of 1310 lung cancer patients diagnosed between January 2011 and October 2013, 253 patients receiving first-line EGFR-TKIs for EGFR-mutant NSCLC were included. The cut-off values for baseline and the 1-month-to-baseline ratio of LMR (MBR), determined by using receiver operating characteristic curves, were 3.29 and 0.63, respectively. Patients were divided into 3 prognostic groups: high LMR and MBR, high LMR or MBR, and low LMR and MBR.

Results

The mean patient age was 65.2 years, and 41% were men. The median PFS and OS were 10.3 and 22.0 months, respectively. The PFS in patients with high LMR and MBR, high LMR or MBR, and low LMR and MBR were 15.4, 7.1, and 2.0 months, respectively (p < 0.001), whereas the OS were 32.6, 13.7, and 5.1 months, respectively (p < 0.001).

Conclusion

A combination of baseline and trend of LMR can be used to identify patients with a high mortality risk in EGFR-mutant NSCLC patients receiving first-line EGFR-TKIs.  相似文献   

8.
Diamine oxidase (DAO; EC 1.4.3.6) levels are strongly reduced in epicotyls of 3-day-old etiolated lentil (Lens culinaris Medicus) seedlings upon exposure to continuous red and blue light, as compared to etiolated controls. Far-red light inhibits DAO activity to a lesser extent. A less marked effect can also be obtained by short (5-10 min) daily exposures. Phytochrome involvement in this light-mediated response has been demonstrated by red/far-red reversibility experiments. These findings provide the first evidence that mechanisms underlying the photoregulation of DAO level in the Leguminosae are related to photomorphogenesis and are essentially unrelated to the photosynthetic capacity of the seedling.  相似文献   

9.
PurposeTo track the saline during infusion with a 15 G needle into healthy pig livers at high and low infusion rates for 300 s.MethodsIn each experiment, the needle was inserted into a single lobe of the liver to a depth of at least 2 cm following its longer axis. Two sets of experiments were defined: 1) low infusion rate of 0.1 mL/min (n = 6) and 2) high infusion rate of 1 mL/min (n = 6). Cine CT scans were carried out and three transverse planes were defined around the infusion point (IP), which corresponds with needle tip. Two assessments were performed: 1) a dynamic plane study focused on the time progress of the saline distribution on a single plane, which provided the Mean Percentage of Grayscale Intensity (MPGI); and 2) a volumetric study focused on the three dimensional distribution of the saline around IP at the end of the experiment, which provided the High Intensity Volume Ratio (HIVR).ResultsThe saline solution was conspicuous around the IP and shortly after heterogeneously inside the vessels. At the high infusion rate, the saline became conspicuous not only much sooner (evident at 20 s) but farther away (mean value of MPGI over 2%, up to 17 mm from the IP) and at a much higher intensity (mean value of MPGI over 10% up to 4 mm from the IP). The lower the radial distance to the IP, the greater the difference in HIVR between both groups.ConclusionsThe high infusion rate leads to a faster, wider and a more marked presence of saline than the low rate. The rapid drainage into the hepatic veins may explain the heterogeneous distribution.  相似文献   

10.
IntroductionApplication of lipopolysaccharide (LPS) is a widely employed model to mimic acute respiratory distress syndrome (ARDS). Available data regarding LPS-induced biomechanical changes on pulmonary epithelial cells are limited only to P. aeruginosa LPS. Considering that LPS from different bacteria could promote a specific mechanical response in epithelial cells, we aim to assess the effect of E. coli LPS, widely employed as a model of ARDS, in the biomechanics of alveolar epithelial cells.MethodsYoung’s modulus (E) of alveolar epithelial cells (A549) was measured by atomic force microscopy every 5 min throughout 60 min of experiment after treatment with LPS from E. coli (100 μg/mL). The percentage of cells presenting actin stress fibers (F-actin staining) was also evaluated. Control cells were treated with culture medium and the values obtained were compared with LPS-treated cells for each time-point.ResultsApplication of LPS induced significant increase in E after 20 min (77%) till 60 min (104%) in comparison to controls. Increase in lung epithelial cell stiffness induced by LPS was associated with a higher number of cells presenting cytoskeletal remodeling.ConclusionsThe observed effects of E. coli LPS on alveolar epithelial cells suggest that this widely-used LPS is able to promote a quick formation of actin stress fibers and stiffening cells, thereby facilitating the disruption of the pulmonary epithelial barrier.  相似文献   

11.
Previous studies have shown that injection of extracellular products (ECP) of Pseudoalteromononas atlantica isolated from shell disease-infected edible crabs (Cancer pagurus) into healthy crabs causes rapid death. In this study we examined the nature of the active lethal factor(s) in ECP. Injection of ECP into crabs caused a rapid decline in the total number of circulating hemocytes (blood cells), and the crabs died within 60 to 90 min. The individuals that died showed eyestalk retraction, limb paralysis, and lack of antennal sensitivity, suggesting that the active factor(s) targeted the nervous system. Histopathological investigations showed that affected crabs had large aggregates of hemocytes in the gills, and there was destruction of the tubules in the hepatopancreas. The active factor in ECP was not sensitive to heat treatment (100°C for 30 min) and proteinase K digestion. As lipopolysaccharide (LPS) was a potential candidate for the lethal factor, it was purified from whole P. atlantica bacteria or ECP and subsequently injected into crabs. These crabs had all of the external symptoms observed previously with ECP, such as limb paralysis and eyestalk retraction, and they died within 90 min after challenge, although no significant decline in the number of circulating hemocytes was observed. Similarly, in vitro incubation of hemocytes with purified LPS (1 to 20 μg) from P. atlantica did not result in the clumping reaction observed with ECP but did result in a degranulation reaction and eventual cell lysis. Injection of crabs with Escherichia coli or Pseudomonas aeruginosa LPS (1 μg g of body weight−1) did not cause any of the characteristic symptoms observed following exposure to P. atlantica LPS. No mortality of crabs followed the injection of E. coli LPS, but P. aeruginosa LPS caused ca. 80% mortality at 2 h after injection. Overall, these results show that the main virulence factor of P. atlantica for edible crabs is LPS either alone or in combination with other heat-stable factors.  相似文献   

12.
The biosynthesis of diamine oxidase (DAO; EC 1.4.3.6) in leaf blades of subterranean clover (Trifolium subterraneum L. cv Seaton Park) was followed by labeling whole plants with 14CO2. A pulse-chase experiment where DAO was immunoprecipitated with anti-DAO antibodies showed that only leaf primordia and the youngest emerged leaves were able to synthesize the enzyme. The amount of DAO in young leaves of clover grown with a range of Cu treatments was determined by its enzymic activity and by single radial immunodiffusion against anti-DAO antibodies; both parameters were highly correlated with the Cu concentration of the leaf. Further, anti-DAO antibodies reacted against apo-DAO prepared in vitro indicating that apo-DAO was absent from Cu-deficient leaves. These results suggest that the biosynthesis of DAO in young clover leaves is controlled by the Cu concentrations of the leaves. Poly(A) mRNA purified from leaf primordia and young emerging leaves of plants with either a high Cu or low Cu supply was translated in wheat germ and rabbit reticulocyte cell-free systems. No differences between the two Cu treatments could be seen in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of the translation products after fluorography. However, anti-DAO antibodies did not detect any DAO synthesized in vitro from either treatment.  相似文献   

13.
Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure.  相似文献   

14.
Zona occludens 2 (ZO-2) has a dual localization. In confluent epithelia, ZO-2 is present at tight junctions (TJs), whereas in sparse proliferating cells it is also found at the nucleus. Previously we demonstrated that in sparse cultures, newly synthesized ZO-2 travels to the nucleus before reaching the plasma membrane. Now we find that in confluent cultures newly synthesized ZO-2 goes directly to the plasma membrane. Epidermal growth factor induces through AKT activation the phosphorylation of the kinase for SR repeats, serine arginine protein kinase 1, which in turn phosphorylates ZO-2, which contains 16 SR repeats. This phosphorylation induces ZO-2 entry into the nucleus and accumulation in speckles. ZO-2 departure from the nucleus requires intact S257, and stabilizing the β-O-linked N-acetylglucosylation (O-GlcNAc) of S257 with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase, triggers nuclear exportation and proteosomal degradation of ZO-2. At the plasma membrane ZO-2 is not O-GlcNAc, and instead, as TJs mature, it becomes phosphorylated at S257 by protein kinase Cζ. This late phosphorylation of S257 is required for the correct cytoarchitecture to develop, as cells transfected with ZO-2 mutant S257A or S257E form aberrant cysts with multiple lumens. These results reveal novel posttranslational modifications of ZO-2 that regulate the intracellular fate of this protein.  相似文献   

15.
Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure.  相似文献   

16.
17.
The composition of Bdellovibrio bacteriovorus lipopolysaccharide (LPS) was determined for cells grown axenically and intraperiplasmically on Escherichia coli or Pseudomonas putida. The LPS of axenically grown bdellovibrios contained glucose and fucosamine as the only detectable neutral sugar and amino sugar, and nonadecenoic acid (19:1) as the predominant fatty acid. Additional fatty acids, heptose, ketodeoxyoctoic acid, and phosphate were also detected. LPS from bdellovibrios grown intraperiplasmically contained components characteristic of both axenically grown bdellovibrios and the substrate cells. Substrate cell-derived LPS fatty acids made up the majority of the bdellovibrio LPS fatty acids and were present in about the same proportions as in the substrate cell LPS. Glucosamine derived from E. coli LPS amounted to about one-third of the hexosamine residues in intraperiplasmically grown bdellovibrio LPS. However, galactose, characteristic of the E. coli outer core and O antigen, was not detected in the bdellovibrio LPS, suggesting that only lipid A components of the substrate cell were incorporated. Substrate cell-derived and bdellovibrio-synthesized LPS materials were conserved in the B. bacteriovorus outer membrane for at least two cycles of intraperiplasmic growth. When bdellovibrios were grown on two different substrate cells successively, lipid A components were taken up from the second while the components incorporated from the lipid A of the first were conserved in the bdellovibrio LPS. The data show that substrate cell lipid A components were incorporated into B. bacteriovorus lipid A during intraperiplasmic growth with little or no change, and that these components, fatty acids and hexosamines, comprised a substantial portion of bdellovibrio lipid A.  相似文献   

18.
In the present study, we analyzed the genetic diversity, phylogenetic relationships, stress tolerance, phytobeneficial traits, and symbiotic characteristics of rhizobial strains isolated from root nodules of Vachellia tortilis subsp. raddiana grown in soils collected in the extreme Southwest of the Anti-Atlas Mountains in Morocco. Subsequent to Rep-PCR fingerprinting, 16S rDNA gene sequencing of 15 representative strains showed that all of them belong to the genus Ensifer. Phylogenetic analysis and concatenation of the housekeeping genes gyrB, rpoB, recA, and dnaK revealed that the entire collection (except strain LMR678) shared 99.08 % to 99.92% similarity with Ensifer sp. USDA 257 and 96.92% to 98.79% with Sinorhizobium BJ1. Phylogenetic analysis of nodC and nodA sequences showed that all strains but one (LMR678) formed a phylogenetic group with the type strain “E. aridi” LMR001T (similarity over 98%). Moreover, it was relevant that most strains belong to the symbiovar vachelliae. In vitro tests revealed that five strains produced IAA, four solubilized inorganic phosphate, and one produced siderophores. All strains showed tolerance to NaCl concentrations ranging from 2 to 12% and grew at up to 10% of PEG6000. A greenhouse plant inoculation test conducted during five months demonstrated that most rhizobial strains were infective and efficient. Strains LMR688, LMR692, and LMR687 exhibited high relative symbiotic efficiency values (respectively 231.6 %, 171.96 %, and 140.84 %). These strains could be considered as the most suitable candidates for inoculation of V. t. subsp. raddiana, to be used as a pioneer plant for restoring arid soils threatened with desertification.  相似文献   

19.
To evaluate the anti-inflammaging effect of lactic acid bacteria (LAB) on age-dependent inflammation, we first screened and selected a tumor necrosis factor (TNF)-α and reactive oxygen species (ROS)-inhibitory LAB, Lactobacillus pentosus var. plantarum C29, among the LABs isolated from fermented vegetables using LPS-stimulated mouse peritoneal macrophages. Oral administration of C29 (2 × 109 CFU/rat) for 8 weeks in aged Fischer 344 rats (age, 16 months) inhibited the expression of the inflammatory markers myeloperoxidase, inducible nitric oxide (NO) synthase, cyclooxygenase-2, pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-6 and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein 1 (AP1), and mitogen-activated protein kinases (MAPKs). Treatment with C29 induced the expression of tight junction proteins ZO-1, occludin, and claudin-1, and reduced intestinal microbial LPS and plasmatic LPS levels and ROS, as well as the Firmicutes to Bacteroidetes ratio, which is significantly higher in aged rats than in young rats. C29 treatment also reduced plasmatic reactive oxygen species, malondialdehyde, C-reactive protein, and TNF-α, and suppressed expression of senescence markers p16 and p53 in the colon of the aged rats, but increased SIRT 1 expression. Based on these findings, we concluded that C29 treatment may suppress aging-dependent colitis by inhibiting NF-κB, AP1, and MAPK activation via the inhibition of gut microbiota LPS production and the induction of tight junction protein expression.  相似文献   

20.
Nutritional alternatives to strengthen animal immunocompetence are critical for welfare and productivity in livestock systems, such as beef cattle operations. This experiment evaluated physiological and innate immunity effects of supplementing an immunomodulatory feed ingredient (Omnigen-AF; Phibro Animal Health, Teaneck, NJ, USA) to beef heifers administered bacterial lipopolysaccharide (LPS). In total, 8 non-pregnant, non-lactating nulliparous Angus×Hereford heifers (676±4 days of age) were ranked by BW (473±8 kg), and assigned to crossover design containing two periods of 34 days each. Heifers were housed in individual pens and had ad libitum access to meadow foxtail (Alopecurus pratensis L.) hay, water and a granulated commercial vitamin+mineral mix. Within each period, heifers received (as-fed basis) 227 g/day of dried distillers grains including (OMN) or not (CON) 56 g of Omnigen-AF for 34 days. On day 28 of each period (0800 h), heifers received an intravenous bolus dose (0.5 μg/kg of BW, diluted in 5 ml of 0.9% sterile saline) of bacterial LPS (Escherichia coli 0111:B4). Hay DM intake was recorded daily from day 0 to 34. Blood was collected at −1, 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 24, 48, 72, 96, 120 and 144 h relative to LPS administration. Heifer intravaginal temperature was recorded every 10 min from −0.5 to 10 h relative to LPS administration. No treatment effect was detected (P=0.35) for hay DM intake during the experiment. No treatment effects were detected (P⩾0.64) for intravaginal temperature and plasma concentrations of tumor necrosis-α, cortisol and haptoglobin, which increased (time effect, P<0.01) for OMN and CON heifers and peaked at 4.5, 2, 4 and 48 h, respectively, after LPS administration. No treatment effects were detected (P⩾0.35) for whole blood mRNA expression of chemokine ligand 5, tumor necrosis-α, cyclooxygenase 2 and interleukin 8, which also increased (time effect, P<0.01) for OMN and CON heifers and peaked at 0.5, 1.5, 2 and 2.5 h, respectively, after LPS administration. Whole blood mRNA expression of interleukin 8 receptor and L-selectin were also similar (P⩾0.61) between OMN and CON heifers, and decreased (time effect, P<0.01) for both treatments reaching nadir levels at 1 and 2.5 h, respectively, after LPS administration. Collectively, OMN supplementation did not modulate the physiological and innate immunity responses of beef heifers to bacterial LPS administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号