首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In most target cells, activation of the type 1 CRH receptor (CRH-R1) by CRH or urocortin (UCN I) leads to stimulation of the Gs-protein/adenylyl cyclase/protein kinase A cascade. Signal transduction of CRH-R1 also involves alternative pathways such as phosphorylation of ERK1/2 and p38 MAPK, two members of the MAPK family that mediate important pathophysiological responses. The intracellular pathways by which CRH-R1 activates these MAPK are only partially understood; here we characterized further signaling mechanisms and molecules involved in CRH-R1-mediated ERK1/2 and p38 MAPK activation. In human embryonic kidney 293 cells overexpressing recombinant CRH-R1alpha, UCN I induced ERK1/2 and p38 MAPK activation was dependent on signaling molecules involved in agonist-induced CRH-R1alpha trafficking and endocytosis. Furthermore, time course studies and use of selective inhibitors demonstrated that ERK1/2 activation occured within 5 min, was sustained for at least 60 min, and was dependent on both phosphatidylinositol 3-kinase (PI3-K)/Akt activation and epidermoid growth factor receptor transactivation involving matrix metelloproteinases. UCN I effect on p38 MAPK phosphorylation was more transient, returned to basal within 40 min and was dependent on epidermoid growth factor receptor transactivation, but not PI3-K/Akt activation. Overexpression of G(alpha-)transducin, showed that G(betagamma)-subunit activation is only partially required for ERK1/2 phosphorylation and does not play a role in p38 MAPK phosphorylation, whereas overexpression of a dominant-negative Ras (Ras N17) attenuated both ERK and p38 MAPK activation. In conclusion, a complex signaling network appears to mediate CRH-R1alpha-MAPK interactions; PI3-K might play a critical role in the regulation of CRH-R1alpha signaling selectivity and cellular responses.  相似文献   

2.
The type 1 CRH receptor (CRH-R1) plays a fundamental role in homeostatic adaptation to stressful stimuli. CRH-R1 gene activity is regulated through alternative splicing and generation of various CRH-R1 mRNA variants. One such variant is the CRH-R1d, which has 14 amino acids missing from the putative seventh transmembrane domain due to exon 13 deletion, a splicing event common to other members of the B1 family of G protein-coupled receptors. In this study, using overexpression of recombinant receptors in human embryonic kidney 293 and myometrial cells, we showed by confocal microscopy that in contrast to CRH-R1alpha, the R1d variant is primarily retained in the cytoplasm, although some cell membrane expression is also evident. Use of antibodies against the CRH-R1 C terminus in nonpermeabilized cells showed that membrane-expressed CRH-R1d contains an extracellular C terminus. Interestingly, treatment of CRH-R1d-expressing cells with CRH (100 nM) for 45-60 min elicited functional responses associated with a significant reduction of plasma membrane receptor expression, redistribution of intracellular receptors, and increased receptor degradation. Site-directed mutagenesis studies identified the cassette G356-F358 within transmembrane domain 7 as crucial for CRH-R1alpha stability to the plasma membrane because deletion of this cassette caused substantial intracellular localization of CRH-R1 alpha. Most importantly, coexpression studies between CRH-R1d and CRH-R2beta demonstrated that the CRH-R2beta could partially rescue CRH-R1d membrane expression, and this was associated with a significant attenuation of urocotrin II-induced cAMP production and ERK1/2 and p38MAPK activation, suggesting that CRH-R1d might specifically induce heterologous impairment of CRH-R2 signaling responses. This mechanism appears to involve accelerated CRH-R2beta endocytosis.  相似文献   

3.
Attenuation of CRH receptor type 1 (CRH-R1) signaling activity might involve desensitization and uncoupling of CRH-R1 from intracellular effectors. We investigated the desensitization of native CRH-R in human myometrial cells from pregnant women and recombinant CRH-R1alpha stably overexpressed in human embryonic kidney (HEK) 293 cells. In both cell types, CRH-R1-mediated adenylyl cyclase activation was susceptible to homologous desensitization induced by pretreatment with high concentrations of CRH. Time course studies showed half-maximal desensitization occurring after approximately 40 min of pretreatment and full recovery of CRH-R1alpha functional response within 2 h of removal of CRH pretreatment. In HEK 293 cells, desensitization of CRH-R1alpha was associated with receptor phosphorylation and subsequent endocytosis. To analyze the mechanism leading to CRH-R1alpha desensitization, we overexpressed a truncated beta-arrestin (319-418) and performed coimmunoprecipitation and G protein-coupled receptor kinase (GRK) translocation studies. We found that GRK3 and GRK6 are the main isoforms that interact with CRH-R1alpha, and that recruitment of GRK3 requires Gbetagamma-subunits as well as beta-arrestin. Site-directed mutagenesis of Ser and Thr residues in the CRH-R1alpha C terminus, identified Thr399 as important for GRK-induced receptor phosphorylation and desensitization.We conclude that homologous desensitization of CRH-R1alpha involves the coordinated action of multiple GRK isoforms, Gbeta gamma dimers and beta-arrestin. Based on our identification of key amino acid(s) for GRK-dependent phosphorylation, we demonstrate the importance of the CRH-R1alpha carboxyl tail for regulation of receptor activity.  相似文献   

4.
The functions of beta-arrestin1 to facilitate clathrin-mediated endocytosis of the beta2-adrenergic receptor and to promote agonist-induced activation of extracellular signal-regulated kinases (ERK) are regulated by its phosphorylation/dephosphorylation at Ser-412. Cytoplasmic beta-arrestin1 is almost stoichiometrically phosphorylated at Ser-412. Dephosphorylation of beta-arrestin1 at the plasma membrane is required for targeting a signaling complex that includes the agonist-occupied receptors to the clathrin-coated pits. Here we demonstrate that beta-arrestin1 phosphorylation and function are modulated by an ERK-dependent negative feedback mechanism. ERK1 and ERK2 phosphorylate beta-arrestin1 at Ser-412 in vitro. Inhibition of ERK activity by a dominant-negative MEK1 mutant significantly attenuates beta-arrestin1 phosphorylation, thereby increasing the concentration of dephosphorylated beta-arrestin1. Under such conditions, beta-arrestin1-mediated beta2-adrenergic receptor internalization is enhanced as is its ability to bind clathrin. In contrast, if ERK-mediated phosphorylation is increased by transfection of a constitutively active MEK1 mutant, receptor internalization is inhibited. Our results suggest that dephosphorylated beta-arrestin1 mediates endocytosis-dependent ERK activation. Following activation, ERKs phosphorylate beta-arrestin1, thereby exerting an inhibitory feedback control of its function.  相似文献   

5.
beta-Arrestins, proteins involved in the turn-off of G protein-coupled receptor (GPCR) activation, bind to the beta(2)-adaptin subunit of the clathrin adaptor AP-2. The interaction of beta(2)-adaptin with beta-arrestin involves critical arginine residues in the C-terminal domain of beta-arrestin and plays an important role in initiating clathrin-mediated endocytosis of the beta(2)-adrenergic receptor (beta(2)AR) (Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S., and Caron, M. G. (2000) J. Biol. Chem. 275, 23120--23126). However, the beta-arrestin-binding site in beta(2)-adaptin has not been identified, and little is known about the role of beta-arrestin/AP-2 interaction in the endocytosis of other GPCRs. Using in vitro binding assays, we have identified two glutamate residues (Glu-849 and Glu-902) in beta(2)-adaptin that are important in beta-arrestin binding. These residues are located in the platform subdomain of the C terminus of beta(2)-adaptin, where accessory/adapter endocytic proteins for other classes of receptors interact, distinct from the main site where clathrin interacts. The functional significance of the beta-arrestin/AP-2/clathrin complex in the endocytosis of GPCRs such as the beta(2)AR and vasopressin type II receptor was evaluated using mutant constructs of the beta(2)-adaptin C terminus containing either the clathrin and the beta-arrestin binding domains or the beta-arrestin-binding domain alone. When expressed in human embryonic kidney 293 cells, both constructs acted as dominant negatives inhibiting the agonist-induced internalization of the beta(2)AR and the vasopressin type II receptor. In addition, although the beta(2)-adaptin construct containing both the clathrin and beta-arrestin binding domains was able to block the endocytosis of transferrin receptors, a beta(2)-adaptin construct capable of associating with beta-arrestin but lacking its high affinity clathrin interaction did not interfere with transferrin receptor endocytosis. These results suggest that the interaction of beta-arrestin with beta(2)-adaptin represents a selective endocytic trigger for several members of the GPCR family.  相似文献   

6.
Activation of CXCR2 IL-8 receptor leads to activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and rapid receptor endocytosis. Co-immunoprecipitation and co-localization experiments showed that arrestin and CXCR2 form complexes with components of the ERK1/2 cascade following ligand stimulation. However, in contrast to the activation of the beta2-adrenergic receptor, arrestin was not necessary for ERK1/2 phosphorylation or receptor endocytosis. In contrast, beta-arrestin 1/2 double knockout cells showed greatly enhanced phosphorylation of ERK1/2, as well as phosphorylation of the stress kinases p38 and c-Jun N-terminal protein kinase. The stimulation of stress kinases in arrestin double knockout cells could be attenuated in the presence of diphenylene iodonium (DPI), an inhibitor of the NADPH oxidase, suggesting that reactive oxidant species (ROS) participated in mitogen-activated protein kinase (MAPK) activation. ROS could indeed be detected in IL-8-stimulated beta-arrestin 1/2 knockout cells, and cytoplasmic Rac was translocated to the membrane fraction, which is a prerequisite for oxidant formation. The oxidative burst induced cell death within 6 h of IL-8 stimulation of these cells, which could be prevented in the presence of DPI. These results indicate a novel function for arrestin, which is protection from an excessive oxidative burst, resulting from the sustained stimulation of G-protein-coupled receptors that cause Rac translocation.  相似文献   

7.
Activation of CRH receptors type 1 (CRH-R1) by CRH or urocortin (UCN) leads to stimulation of multiple G proteins with consequent effects on diverse signaling cascades in a tissue-specific manner. In human myometrium and human embryonic kidney (HEK)293 cells, binding of UCN to CRH-R1alpha receptors activates both the Gs and Gq, leading to activation of the adenylyl cyclase/protein kinase A (PKA) and the phospholipase C/protein kinase C and ERK1/2 signaling pathways, respectively. The overall result of these signals is often unpredictable, as these two signaling pathways can interact in many cellular systems, with either potentiation or inhibition of ERK1/2 activity. In the present studies we investigated potential signaling interactions after stimulation of CRH-R1alpha receptors in human cultured pregnant myometrial cells or HEK293 cells overexpressing recombinant CRH-R1alpha receptors. We found that the adenylyl cyclase/PKA pathway has the capacity to markedly decrease UCN-induced ERK1/2 activation, and that these effects were due in part to the ability of PKA to phosphorylate the CRH-R1alpha at position Ser(301) in the third intracellular loop. Mutant CRH-R1alpha receptors with substitutions at position Ser(301), which is the only potential PKA phosphorylation site, were resistant to PKA-dependent phosphorylation and showed altered signaling characteristics, which were dependent upon the amino acid substitution at this position.We conclude that Ser(301), which is located in the third intracellular loop of CRH-R1alpha, is critical for efficient coupling of the receptor to G proteins and to second messenger generation. Phosphorylation by PKA prevents maximal coupling of the CRH-R1alpha to Gq-protein, and thereby reduces activation of ERK 1/2.  相似文献   

8.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

9.
10.
11.
12.
beta(1)-Adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. However, beta(1)AR can internalize as G protein-coupled receptor kinase 2 (GRK2) is fused to its carboxyl terminus. Internalization of the beta(1)AR and GRK2 fusion protein (beta(1)AR/GRK2) is dependent on dynamin but independent of beta-arrestin and phosphorylation. The beta(1)AR/GRK2 fusion protein internalizes via clathrin-coated pits and is found to co-localize with the endosome that contains transferrin. The fusion proteins consisting of beta(1)AR and various portions of GRK2 reveal that the residues 498-502 in the carboxyl-terminal domain of GRK2 are critical to promote internalization of the fusion proteins. This domain contains a consensus sequence of a clathrin-binding motif defined as a clathrin box. In vitro binding assays show that the residues 498-502 of GRK2 bind the amino-terminal domain of clathrin heavy chain to almost the same extent as beta-arrestin1. The mutation of the clathrin box in the carboxyl-terminal domain of GRK2 results in the loss of the ability to promote internalization of the fusion protein. GRK2 activity increases and then decreases as the concentration of clathrin heavy chain increases. Taken together, these results imply that GRK2 contains a functional clathrin box and directly interacts with clathrin to modulate its function.  相似文献   

13.
In most target tissues, the adenylyl cyclase/cAMP/PKA, the extracellular signal regulated kinase and the protein kinase B/Akt are the main pathways employed by the type 2 corticotropin-releasing hormone receptor to mediate the biological actions of urocortins (Ucns) and CRH. To decipher the molecular determinants of CRH-R2 signaling, we studied the signaling pathways in HEK293 cells overexpressing recombinant human CRH-R2β receptors. Use of specific kinase inhibitors showed that the CRH-R2β cognate agonist, Ucn 2, activated extracellular signal regulated kinase in a phosphoinositide 3-kinase and cyclic adenosine monophosphate/PKA-dependent manner with contribution from Epac activation. Ucn 2 also induced PKA-dependent association between AKAP250 and CRH-R2β that appeared to be necessary for extracellular signal regulated kinase activation. PKB/Akt activation was also mediated via pertussis toxin-sensitive G-proteins and PI3-K activation but did not require cAMP/PKA, Epac or protein kinase C for optimal activation. Potential feedback mechanisms that target the CRH-R2β itself and modulate receptor trafficking and endocytosis were also investigated. Indeed, our results suggested that inhibition of either PKA or extracellular signal regulated kinase pathway accelerates CRH-R2β endocytosis. Furthermore, Ucn 2-activated extracellular signal regulated kinase appeared to target β-arrestin1 and modulate, through phosphorylation at Ser412, β-arrestin1 translocation to the plasma membrane and CRH-R2β internalization kinetics. Loss of this “negative feedback” mechanism through inhibition of the extracellular signal regulated kinase activity resulted in significant attenuation of Ucn 2-induced cAMP response, whereas Akt phosphorylation was not affected by altered receptor endocytosis. These findings reveal a complex interplay between the signaling molecules that allow “fine-tuning” of CRH-R2β functional responses and regulate signal integration.  相似文献   

14.
Two isoforms of the dopamine D2 receptor, D2L (long) and D2S (short), differ by the insertion of a 29-amino acid specific to D2L within the putative third intracellular loop of the receptor. Here, we examined D2 receptor-mediated MAPK activation in association with receptor internalization. Overexpression of beta-arrestin 1 and 2 increased the D2S-mediated activation of MAPK, whereas it did not affect the activation of MAPK by D2L. Expression of a dominant negative beta-arrestin 2 (319-418) mutant and of a dominant negative dynamin I (K44A) mutant inhibited the activation of MAPK by D2S, but not the activation of MAPK by D2L. Treatment with inhibitors of internalization, i.e. concanavalin A and monodansylcadaverin, blocked D2S-mediated MAPK activation but not D2L-mediated activation. By confocal microscopy, we observed beta-arrestin 1 and 2, translocated to the plasma membrane and colocalized with D2L and D2S receptors upon stimulation with dopamine, and this was followed by the translocation of receptors into endocytic vesicles. Moreover, the expression of the beta-arrestin 2 (319-418) mutant blocked the internalization of both D2L and D2S. In addition, although K44A dynamin mutant expression did not alter D2L internalization, it completely blocked the internalization of D2S. The stimulation of D2L induces activation of MAPK via transactivation of the platelet-derived growth factor receptor, whereas D2S does not. Taken together, these data suggest that D2L activates MAPK signaling by mobilizing the growth factor receptor, platelet-derived growth factor receptor, whereas D2S appears to activate MAPK signaling by mobilizing clathrin-mediated endocytosis in a beta-arrestin/dynamin-dependent manner.  相似文献   

15.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

16.
Chemotaxis mediated by chemokine receptors such as CXCR4 plays a key role in lymphocyte homing and hematopoiesis as well as in breast cancer metastasis. We have demonstrated previously that beta-arrestin2 functions to attenuate CXCR4-mediated G protein activation and to enhance CXCR4 internalization. Here we show further that the expression of beta-arrestin2 in both HeLa and human embryonic kidney 293 cells significantly enhances the chemotactic efficacy of stromal cell-derived factor 1alpha, the specific agonist of CXCR4, whereas the suppression of beta-arrestin2 endogenous expression by antisense or RNA-mediated interference technology considerably attenuates stromal cell-derived factor 1alpha-induced cell migration. Expression of beta-arrestin2 also augmented chemokine receptor CCR5-mediated but not epidermal growth factor receptor-mediated chemotaxis, indicating the specific effect of beta-arrestin2. Further analysis reveals that expression of beta-arrestin2 strengthened CXCR4-mediated activation of both p38 MAPK and ERK, and the suppression of beta-arrestin2 expression blocked the activation of two kinases. Interestingly, inhibition of p38 MAPK activation (but not ERK activation) by its inhibitors or by expression of a dominant-negative mutant of p38 MAPK effectively blocked the chemotactic effect of beta-arrestin2. Expression of a dominant-negative mutant of ASK1 also exerted the similar blocking effect. The results of our study suggest that beta-arrestin2 can function not only as a regulator of CXCR4 signaling but also as a mediator of stromal cell-derived factor 1alpha-induced chemotaxis and that this activity probably occurs via the ASK1/p38 MAPK pathway.  相似文献   

17.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

18.
The epidermal growth factor receptor ( EGFR ) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis. This endocytosis lacks many of the characteristics of ligand‐induced EGFR endocytosis. We compared the two types of endocytosis with regard to the requirements for proteins in the internalization machinery. Both types of endocytosis require clathrin, but while epidermal growth factor (EGF) ‐induced EGFR internalization also required Grb 2 , p38 MAPK ‐induced internalization did not. Interestingly , AP ‐2 knock down blocked p38 MAPK ‐induced EGFR internalization, but only mildly affected EGF ‐induced internalization. In line with this, simultaneously mutating two AP ‐2 interaction sites in EGFR affected p38 MAPK ‐induced internalization much more than EGF ‐induced EGFR internalization. Thus, it seems that EGFR in the two situations uses different sets of internalization mechanisms.  相似文献   

19.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

20.
G protein-coupled receptors form the largest family of membrane receptors and transmit diverse ligand signals to modulate various cellular responses. After activation by their ligands, some of these G protein-coupled receptors are desensitized, internalized (endocytosed), and down-regulated (degraded). In HEK 293 cells, the G(s)-coupled beta2-adrenergic receptor was postulated to initiate a second wave of signaling, such as the activation of the mitogen-activated protein kinase (MAPK) pathway after the receptor is internalized. The tyrosine kinase c-Src plays a critical role in these events. Here we used mouse embryonic fibroblast (MEF) cells deficient in Src family tyrosine kinases to examine the role of Src in beta2-adrenergic receptor signaling to the MAPK pathway and in receptor internalization. We found that in Src-deficient cells the beta2-adrenergic receptor could activate the MAPK pathway. However, the internalization of beta2-adrenergic receptors was blocked in Src-deficient MEF cells. Furthermore, we observed that in MEF cells deficient in beta-arrestin 2 the internalization of the beta2-adrenergic receptor was impaired, whereas the activation of the MAPK pathway by the beta2-adrenergic receptor was normal. Our data demonstrate that although Src and beta-arrestin 2 play essential roles in beta2-adrenergic receptor internalization, they are not required for the activation of the MAPK pathway by the beta2-adrenergic receptor. In other words, our finding suggests that receptor internalization is not required for beta2-adrenergic receptor signaling to the MAPK pathway in MEF cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号