首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge.  相似文献   

2.
Most equine infectious anemia virus (EIAV)-infected horses have acute clinical disease, but they eventually control the disease and become lifelong carriers. Cytotoxic T lymphocytes (CTL) are considered an important immune component in the control of infections with lentiviruses including EIAV, but definitive evidence for CTL in the control of disease in carrier horses is lacking. By using retroviral vector-transduced target cells expressing different Gag proteins and overlapping synthetic peptides of 16 to 25 amino acids, peptides containing at least 12 Gag CTL epitopes recognized by virus-stimulated PBMC from six long-term EIAV-infected horses were identified. All identified peptides were located within Gag matrix (p15) and capsid (p26) proteins, as no killing of target cells expressing p11 and p9 occurred. Each of the six horses had CTL recognizing at least one Gag epitope, while CTL from one horse recognized at least eight different Gag epitopes. None of the identified peptides were recognized by CTL from all six horses. Two nonamer peptide epitopes were defined from Gag p26; one (18a) was likely restricted by class I equine leukocyte alloantigen A5.1 (ELA-A5.1) molecules, and the other (28b-1) was likely restricted by ELA-A9 molecules. Sensitization of equine kidney target cells for CTLm killing required 10 nM peptide 18a and 1 nM 28b-1. The results demonstrated that diverse CTL responses against Gag epitopes were generated in long-term EIAV-infected horses and indicated that ELA-A class I molecules were responsible for the diversity of CTL epitopes recognized. This information indicates that multiple epitopes or whole proteins will be needed to induce CTL in horses with different ELA-A alleles in order to evaluate their role in controlling EIAV.Equine infectious anemia virus (EIAV) belongs to the Lentivirus genus, which includes human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and several other animal viruses. EIAV causes disease in horses which is characterized by recurrent febrile episodes associated with viremia, anemia, and thrombocytopenia (10). Most infected horses are able to eventually control the disease and become lifelong EIAV carriers (9). The ability of horses to restrict EIAV replication to very low levels and to remain free of clinical disease provides an opportunity to determine the immunologic mechanisms involved in this lentivirus control.Immune responses are required for the termination of the acute viremia during EIAV infection since foals with severe combined immunodeficiency cannot control the initial viremia following EIAV infection, in contrast to normal foals (41). Results suggesting that immune responses are involved in the control of EIAV in carrier horses include the observation that corticosteroid- and cyclophosphamide-treated carrier horses have recurrent viremia and disease (24). Neutralizing antibody can be an important component of the protective immune response against lentiviral infections (12). Type-specific neutralizing antibody appears following the episodes of plasma viremia in EIAV-infected horses (25); however, there is evidence suggesting that the presence of the neutralizing antibody does not necessarily relate to the occurrence and control of viremic episodes (8, 25). Detectable neutralizing antibodies to the variant isolated during a disease episode can appear after the episode is controlled (8). Neutralizing antibody-escape variants are isolated from EIAV carrier horses as early as 5 days after corticosteroid treatment, when the antibody levels have not significantly changed (24). Further, the viremic episode induced by corticosteroid treatment can be terminated before the appearance of neutralizing antibody to the variant causing viremia (24). Other evidence implicating immune responses other than neutralizing antibody in EIAV control includes the following: (i) EIAV carrier horses can resist challenge with a heterologous strain in the absence of detectable neutralizing antibody to the challenge virus (23), and (ii) some horses immunized with an inactivated virus vaccine resist homologous strain challenge without detectable levels of neutralizing antibody but with virus-specific cell-mediated immune responses (17).Accumulating evidence suggests that major histocompatibility complex (MHC) class I-restricted virus-specific cytotoxic T lymphocytes (CTL) may play an important role in the immune control of diseases caused by HIV-1 and SIV infection (5, 26, 51). CTL appear to be involved in both the clearance of the primary viremia in HIV-1 infection (26) and the prevention of disease progression to AIDS (42). In EIAV infection, the appearance of activated CD8+ CTL (effectors) correlated with the control of the initial viremic episodes (33). Although the CTL effectors decline to low levels when plasma viremias become undetectable, a high frequency of memory CTL (CTLm) has been detected in some carrier horses (34), and these CTLm recognize either EIAV Env or Gag/Pr proteins or both (15, 34). Both CD8+ and CD4+ CTL activities have been detected in some EIAV-infected horses (15), but their roles in disease control are not known.The epitopes recognized by CD8+ CTL are usually peptides of 8 to 11 amino acids (aa) presented by MHC class I molecules on the target cell surface. Identifying the CTL epitopes and the MHC class I molecules that restrict responses is necessary in order to determine how CTL are involved in the control of disease and to stimulate CTL by vaccination. However, the occurrence of escape mutants which are no longer recognized by CTL is one of the major difficulties for inducing effective CTL responses against different variants (6). Gag protein epitopes recognized by CTL may be of importance because Gag proteins are relatively conserved among EIAV strains (21, 32, 40, 48). In this study, at least 12 peptides with CTL epitopes were recognized by stimulated peripheral blood mononuclear cells (PBMC) from six long-term EIAV-infected horses with different ELA-A alleles. These peptides were identified by using retroviral vectors expressing individual Gag proteins and synthetic overlapping peptides from recognized proteins. We identified two nonamer peptides, one apparently restricted by ELA-A5.1, and another by ELA-A9, molecules.  相似文献   

3.
4.
5.
Three moderately to broadly recognized equine infectious anemia virus (EIAV) peptides that contained helper T-lymphocyte (Th) 1 epitopes were previously identified. Although lipopeptide immunization was only weakly immunostimulatory in a preliminary study, as measured by T-lymphocyte proliferation responses, it was of interest to define additional broadly recognized Th1 epitopes to include in future immunization trials. Using broadly cross-reactive and conserved Th epitopes known in the related human immunodeficiency virus-1 (HIV-1) and binding motifs defined in human leukocyte antigen DR molecules as guides, this work identified three new peptides containing Th1 epitopes recognized by 60–75% of EIAV infected horses. The observed similarity across species of major histocompatibility complex (MHC) class II binding motifs and the conservation of Th peptides between related viruses should allow easier targeting of Th epitope regions in less well characterized pathogens and/or in species whose MHC class II molecules are poorly defined.  相似文献   

6.
Viral peptides are recognized by cytotoxic T lymphocytes (CTL) as a complex with major histocompatibility complex (MHC) class I molecules, but the extent to which a single HLA allele can accommodate epitope peptides of different length and sequence is not well characterized. Here we report the identification of clonal CTL responses from the same donor that independently recognize one of two HLA-B57-restricted epitopes, KAFSPEVIPMF (KF11; p24(Gag) residues 30 to 40) and KAFSPEVI (KF8; p24(Gag) residues 30 to 37). Although lysis studies indicated that the KF11 peptide stabilized the HLA-B57-peptide complex more efficiently than the KI8 peptide, strong clonal responses were directed at each epitope. In samples from a second donor, the same phenomenon was observed, in which distinct CTL clones recognized peptide epitopes presented by the same HLA class I allele (in this case, HLA-A3) which were entirely overlapping. These data are relevant to the accurate characterization of CTL responses, which is fundamental to a detailed understanding of MHC class I-restricted immunity. In addition, these studies demonstrate marked differences in the length of peptides presented by HLA-B57, an allele which is associated with nonprogressive human immunodeficiency virus infection.  相似文献   

7.
8.
One of the most remarkable features of the MHC class I loci of most outbred mammalian populations is their exceptional diversity, yet the functional importance of this diversity remains to be fully understood. The cotton-top tamarin (Saguinus oedipus) is unusual in having MHC class I loci that exhibit both limited polymorphism and sequence variation. To investigate the functional implications of limited MHC class I diversity in this outbred primate species, we infected five tamarins with influenza virus and defined the CTL epitopes recognized by each individual. In addition to an immunodominant epitope of the viral nucleoprotein (NP) that was recognized by all individuals, two tamarins also made a response to the same epitope of the matrix (M1) protein. Surprisingly, these two tamarins used different MHC class I molecules, Saoe-G*02 and -G*04, to present the M1 epitope. In addition, CTLs from one of the tamarins recognized target cells that expressed neither Saoe-G*02 nor -G*04, but, rather, a third MHC class I molecule, Saoe-G*12. Sequence analysis revealed that Saoe-G*12 differs from both Saoe-G*02 and -G*04 by only two nucleotides and was probably generated by recombination between these two alleles. These results demonstrate that at least three of the tamarin's MHC class I molecules can present the same epitope to virus-specific CTLs. Thus, four of the tamarin's 12 MHC class I molecules bound only two influenza virus CTL epitopes. Therefore, the functional diversity of cotton-top tamarin's MHC class I loci may be even more limited than their genetic diversity suggests.  相似文献   

9.
CTL recognize peptides that derive from viral protein Ags by proteolytic processing and are presented by MHC class I molecules. In this study we tested whether coexpression of viral Ags in the same cell leads to competition between them. To this end, two L(d)-restricted epitopes derived from HIV-1 envelope gp160 (ENV) and from CMV pp89 phosphoprotein were coexpressed. HIV ENV strain IIIB, but not MN variant, impaired recognition by specific CTL of CMV pp89 epitope 9pp89. Susceptibility to inhibition after ENV coexpression was inversely related to the amount of antigenic 9pp89 peptide processed from different antigenic constructs. In line with it, competition decreased the yield of naturally processed antigenic 9pp89 peptide bound to MHC class I molecules in coinfected cells. Also, point mutants of the presenting MHC class I molecule differed in their competition pattern. Collectively, the data imply that competition operates at the step of MHC-peptide complex assembly or stabilization. We conclude that, although not the rule, in certain combinations there is interference between different Ags expressed in the same cell and presented by the same MHC class I allele. These studies have implications for vaccine development and for understanding immunodominance.  相似文献   

10.
Using plasmid vaccination with DNA encoding the putative phosphate transport receptor PstS-3 from Mycobacterium tuberculosis and 36 overlapping 20-mer peptides spanning the entire PstS-3 sequence, we determined the immunodominant Th1-type CD4(+) T cell epitopes in C57BL/10 mice, as measured by spleen cell IL-2 and IFN-gamma production. Furthermore, a potent IFN-gamma-inducing, D(b)-restricted CD8(+) epitope was identified using MHC class I mutant B6.C-H-2(bm13) mice and intracellular IFN-gamma and whole blood CD8(+) T cell tetramer staining. Using adoptive transfer of CFSE-labeled, peptide-pulsed syngeneic spleen cells from naive animals into DNA vaccinated or M. tuberculosis-infected recipients, we demonstrated a functional in vivo CTL activity against this D(b)-restricted PstS-3 epitope. IFN-gamma ELISPOT responses to this epitope were also detected in tuberculosis-infected mice. The CD4(+) and CD8(+) T cell epitopes defined for PstS-3 were completely specific and not recognized in mice vaccinated with either PstS-1 or PstS-2 DNA. The H-2 haplotype exerted a strong influence on immune reactivity to the PstS-3 Ag, and mice of the H-2(b, p, and f) haplotype produced significant Ab and Th1-type cytokine levels, whereas mice of H-2(d, k, r, s, and q) haplotype were completely unreactive. Low responsiveness against PstS-3 in MHC class II mutant B6.C-H-2(bm12) mice could be overcome by DNA vaccination. IFN-gamma-producing CD8(+) T cells could also be detected against the D(b)-restricted epitope in H-2(p) haplotype mice. These results highlight the potential of DNA vaccination for the induction and characterization of CD4(+) and particularly CD8(+) T cell responses against mycobacterial Ags.  相似文献   

11.
The minigenes encoding Plasmodiumfalciparum CTL epitopes restricted to human MHC class I molecular HLA-A2 and HLA-B51, which were both at high frequency among Chinese population, were constructed as mono-epitope CTL vaccines named pcDNA3.1/tr and pcDNA3.1/sh. The minigenes of the two epitopes were then tandem linked to form a dimeric CTL epitope minigene recombinant vaccine. After DNA transfection, the epitope minigenes were expressed respectively in two human cell lines, each bearing one MHC class I molecule named CIR/HLA-A2.1 and K562/HLA-B51. The intracellular expression of the CTL epitope minigenes not only enhanced the stability of HLA-A2.1 and HLA-B51 molecules but also increased the assemblage of MHC class I molecules on cell surfaces, which testified the specific process and presentation of those endogenous expressed epitopes. For the cells transfected with the dimeric minigene encoding two tandem linked epitopes, the expression and presentation of each epitope were also detected on cell membranes that bore different MHC class I molecules. It meant that the adjacency of the two CTL epitopes did not interfere with the specific process and presentation of each epitope. Compared with the ordinary CTL studies that inoculated synthesized epitope peptides with peripheral blood cells, this work aimed to process the epitopes directly inside HLA class I allele specific human cells, and thus theoretically imitated the same procedurein vivo. It was also an economical way to predict the immunogenicity of CTL epitopes at an early stage especially in laboratories with limited financial resource.  相似文献   

12.
Simian immunodeficiency virus (SIV) infection of the rhesus macaque is currently the best animal model for AIDS vaccine development. One limitation of this model, however, has been the small number of cytotoxic T-lymphocyte (CTL) epitopes and restricting major histocompatibility complex (MHC) class I molecules available for investigating virus-specific CTL responses. To identify new MHC class I-restricted CTL epitopes, we infected five members of a family of MHC-defined rhesus macaques intravenously with SIV. Five new CTL epitopes bound by four different MHC class I molecules were defined. These included two Env epitopes bound by Mamu-A*11 and -B*03 and three Nef epitopes bound by Mamu-B*03, -B*04, and -B*17. All four restricting MHC class I molecules were encoded on only two haplotypes (b or c). Interestingly, resistance to disease progression within this family appeared to be associated with the inheritance of one or both of these MHC class I haplotypes. Two individuals that inherited haplotypes b and c separately survived for 299 and 511 days, respectively, while another individual that inherited both haplotypes survived for 889 days. In contrast, two MHC class I-identical individuals that did not inherit either haplotype rapidly progressed to disease (survived <80 days). Since all five offspring were identical at their Mamu-DRB loci, MHC class II differences are unlikely to account for their patterns of disease progression. These results double the number of SIV CTL epitopes defined in rhesus macaques and provide evidence that allelic differences at the MHC class I loci may influence rates of disease progression among AIDS virus-infected individuals.  相似文献   

13.
At least two loci encode polymorphic class I MHC antigens in the horse   总被引:1,自引:0,他引:1  
Summary. Six monoclonal antibodies and ten alloantisera were used to precipitate cell surface molecules of approximately 44kDa (class I MHC antigens) from radiolabelled equine peripheral blood lymphocytes. All ten antisera were raised against antigens of a single donor horse (horse 0834, ELA-A2,-A2). Four methods of producing antisera were compared: one or two pregnancies, skin allografting, and skin grafting followed by pregnancy. Immunization by pregnancy appeared to produce antibodies against class I products only, while skin grafting raised antibodies to class II antigens as well. Nine of the antisera were raised across an entire MHC haplotype barrier, while one recipient carried the ELA-A2 antigen of the donor. The pregnancy antiserum raised across this barrier probably identifies a second polymorphic class I locus in the horse. Sequential immunoprecipitation using this antiserum in the first stage and an anti-MHC haplotype antiserum or monoclonal antibody reagent in the second stage supported this hypothesis. Gene products of this second ELA class I locus are immunogenic in pregnancy.  相似文献   

14.
Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we evaluated the production of human DC-TC hybrids using an electrofusion protocol previously defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells (888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-A*0201, HLA-DR beta 1*0401, and HLA-DR beta 1*0701 were fused with 888mel cells that do not express any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100, tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DR beta 1*0401- and HLA-DR beta 1*0701-restricted peptides from gp100 to CD4(+) T cell populations. Therefore, fusions of DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and may be useful for the induction of tumor-reactive CD8(+) and CD4(+) T cells in vitro and in human vaccination trials.  相似文献   

15.
The large diversity in MHC class I molecules in a population lowers the chance that a virus infects a host to which it is pre-adapted to escape the MHC binding of CTL epitopes. However, viruses can also lose CTL epitopes by escaping the monomorphic antigen processing components of the pathway (proteasome and TAP) that create the epitope precursors. If viruses were to accumulate escape mutations affecting these monomorphic components, they would become pre-adapted to all hosts regardless of the MHC polymorphism. To assess whether viruses exploit this apparent vulnerability, we study the evolution of HIV-1 with bioinformatic tools that allow us to predict CTL epitopes, and quantify the frequency and accumulation of antigen processing escapes. We found that within hosts, proteasome and TAP escape mutations occur frequently. However, on the population level these escapes do not accumulate: the total number of predicted epitopes and epitope precursors in HIV-1 clade B has remained relatively constant over the last 30 years. We argue that this lack of adaptation can be explained by the combined effect of the MHC polymorphism and the high specificity of individual MHC molecules. Because of these two properties, only a subset of the epitope precursors in a host are potential epitopes, and that subset differs between hosts. We estimate that upon transmission of a virus to a new host 39%-66% of the mutations that caused epitope precursor escapes are released from immune selection pressure.  相似文献   

16.
Cytotoxic T lymphocytes (CTL) recognize virus peptide fragments complexed with class I major histocompatibility complex (MHC) molecules on the surface of virus-infected cells. Recognition is mediated by a membrane-bound T-cell receptor (TCR) composed of alpha and beta chains. Studies of the CTL response to lymphocytic choriomeningitis virus (LCMV) in H-2b mice have revealed that three distinct viral epitopes are recognized by CTL of the H-2b haplotype and that all of the three epitopes are restricted by the Db MHC molecule. The immunodominant Db-restricted CTL epitope, located at LCMV glycoprotein amino acids 278 to 286, was earlier noted to be recognized by TCRs that consistently contained V alpha 4 segments but had heterogeneous V beta segments. Here we show that CTL clones recognizing the other two H-2Db-restricted epitopes, LCMV glycoprotein amino acids 34 to 40 and nucleoprotein amino acids 397 to 407 (defined in this study), utilize TCR alpha chains which do not belong to the V alpha 4 subfamily. Hence, usage of V alpha and V beta in the TCRs recognizing peptide fragments from one virus restricted by a single MHC molecule is not sufficiently homogeneous to allow manipulation of the anti-viral CTL response at the level of TCRs. The diversity of anti-viral CTL likely provides the host with a wider option for attacking virus-infected cells and prevents the emergence of virus escape mutants that might arise if TCRs specific for the virus were homogeneous.  相似文献   

17.
Equine herpesvirus-1 (EHV-1), an α-herpesvirus of the family Herpesviridae, causes respiratory disease, abortion, and encephalomyelitis in horses. EHV-1 utilizes equine MHC class I molecules as entry receptors. However, hamster MHC class I molecules on EHV-1-susceptible CHO-K1 cells play no role in EHV-1 entry. To identify the MHC class I molecule region that is responsible for EHV-1 entry, domain exchange and site-directed mutagenesis experiments were performed, in which parts of the extracellular region of hamster MHC class I (clone C5) were replaced with corresponding sequences from equine MHC class I (clone A68). Substitution of alanine for glutamine at position 173 (Q173A) within the α2 domain of the MHC class I molecule enabled hamster MHC class I C5 to mediate EHV-1 entry into cells. Conversely, substitution of glutamine for alanine at position 173 (A173Q) in equine MHC class I A68 resulted in loss of EHV-1 receptor function. Equine MHC class I clone 3.4, which possesses threonine at position 173, was unable to act as an EHV-1 receptor. Substitution of alanine for threonine at position 173 (T173A) enabled MHC class I 3.4 to mediate EHV-1 entry into cells. These results suggest that the amino acid residue at position 173 of the MHC class I molecule is involved in the efficiency of EHV-1 entry.  相似文献   

18.
The major histocompatibility complex (MHC)-restricted selection of T-cell epitopes of foot-and-mouth disease virus (FMDV) by individual cattle MHC class II DR (BoLA-DR) molecules was studied in a direct MHC-peptide binding assay. By in vitro priming of T lymphocytes derived from animals homozygous for both MHC class I and II, five T-cell epitopes were analyzed in the context of three MHC class II haplotypes. We found that the presentation of these T-cell epitopes was mediated by DR molecules, since blocking this pathway of antigen presentation using monoclonal antibody TH14B completely abolished the proliferative responses against the peptides. To study the DR-restricted presentation of these T-cell epitopes, a direct MHC-peptide binding assay on isolated cattle DR molecules was developed. Purified cattle MHC class II DR molecules of the BoLA-DRB3*0201, BoLA-DRB3*1101, and BoLA-DRB3*1201 alleles were isolated from peripheral blood mononuclear cells. For each allele, one of the identified T-cell epitopes was biotinylated, and used as a marker peptide for the development of a competitive MHC-peptide binding assay. Subsequently, the T-cell epitopes of FMDV with functionally defined MHC class II specificity were analyzed in this binding assay. The affinity of the epitopes to bind to certain DR molecules was significantly correlated to the capacity to induce T-cell proliferation. This demonstrated at the molecular level that the selection of individual T-cell epitopes found at the functional level was indeed the result of MHC restriction.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1.  相似文献   

20.
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号