首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstruction of a biological system from its experimental time series data is a challenging task in systems biology. The S-system which consists of a group of nonlinear ordinary differential equations (ODEs) is an effective model to characterize molecular biological systems and analyze the system dynamics. However, inference of S-systems without the knowledge of system structure is not a trivial task due to its nonlinearity and complexity. In this paper, a pruning separable parameter estimation algorithm (PSPEA) is proposed for inferring S-systems. This novel algorithm combines the separable parameter estimation method (SPEM) and a pruning strategy, which includes adding an l? regularization term to the objective function and pruning the solution with a threshold value. Then, this algorithm is combined with the continuous genetic algorithm (CGA) to form a hybrid algorithm that owns the properties of these two combined algorithms. The performance of the pruning strategy in the proposed algorithm is evaluated from two aspects: the parameter estimation error and structure identification accuracy. The results show that the proposed algorithm with the pruning strategy has much lower estimation error and much higher identification accuracy than the existing method.  相似文献   

2.
Emmert-Streib F 《PloS one》2011,6(12):e27733
Recently, the construction of networks from time series data has gained widespread interest. In this paper, we develop this area further by introducing a network construction procedure for pseudoperiodic time series. We call such networks episode networks, in which an episode corresponds to a temporal interval of a time series, and which defines a node in the network. Our model includes a number of features which distinguish it from current methods. First, the proposed construction procedure is a parametric model which allows it to adapt to the characteristics of the data; the length of an episode being the parameter. As a direct consequence, networks of minimal size containing the maximal information about the time series can be obtained. In this paper, we provide an algorithm to determine the optimal value of this parameter. Second, we employ estimates of mutual information values to define the connectivity structure among the nodes in the network to exploit efficiently the nonlinearities in the time series. Finally, we apply our method to data from electroencephalogram (EEG) experiments and demonstrate that the constructed episode networks capture discriminative information from the underlying time series that may be useful for diagnostic purposes.  相似文献   

3.
In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.  相似文献   

4.
Du P  Jiang Y  Wang Y 《Biometrics》2011,67(4):1330-1339
Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data.  相似文献   

5.
Guo W  Brown MB 《Biometrics》2000,56(3):686-691
Structural time series models have applications in many different fields such as biology, economics, and meteorology. A structural times series model can be represented as a state-space model where the states of the system represent the unobserved components and the structural parameters have clear interpretations. This paper introduces a class of structural time series models that incorporate feedback from the latent components of the history. An iterative procedure is proposed for estimation. These models allow flexible and robust feedback mechanisms, have clear interpretations, and have a computationally efficient estimation procedure. They are applied to hormone data to characterize hormone secretion and to explore a potential feedback mechanism.  相似文献   

6.
Yip PS  Lin HZ  Xi L 《Biometrics》2005,61(4):1085-1092
A semiparametric estimation procedure is proposed to model capture-recapture data with the aim of estimating the population size for a closed population. Individuals' covariates are possibly time dependent and missing at noncaptured times and may be measured with error. A set of estimating equations (EEs) based on covariate process and capture-recapture data is constructed to estimate the relevant parameters and the population size. These EEs can be solved by an algorithm similar to an EM algorithm. Simulation results show that the proposed procedures work better than the naive estimate. In some cases they are even better than "ideal" estimates, for which the true values of covariates are available for all captured subjects over the entire experimental period. We apply the method to a capture-recapture experiment on the bird species Prinia flaviventris in Hong Kong.  相似文献   

7.
Improving cluster-based missing value estimation of DNA microarray data   总被引:1,自引:0,他引:1  
We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is performed iteratively using the recently estimated values. The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation. The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.  相似文献   

8.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

9.
In this paper we use marginal probabilities to derive expressions for the means, variances and covariances ofm-compartment systems. We also present an efficient algorithm for the estimation of the parameters of the system using time series data when measurements are available fromk of them compartments. An application of the analysis and parameter estimation procedure for a model representing the results of a cancer treatment follow-up study is given. Supported in part by NSF Grant Number DCR74-17282.  相似文献   

10.
Inferring qualitative relations in genetic networks and metabolic pathways   总被引:8,自引:0,他引:8  
MOTIVATION: Inferring genetic network architecture from time series data of gene expression patterns is an important topic in bioinformatics. Although inference algorithms based on the Boolean network were proposed, the Boolean network was not sufficient as a model of a genetic network. RESULTS: First, a Boolean network model with noise is proposed, together with an inference algorithm for it. Next, a qualitative network model is proposed, in which regulation rules are represented as qualitative rules and embedded in the network structure. Algorithms are also presented for inferring qualitative relations from time series data. Then, an algorithm for inferring S-systems (synergistic and saturable systems) from time series data is presented, where S-systems are based on a particular kind of nonlinear differential equation and have been applied to the analysis of various biological systems. Theoretical results are shown for Boolean networks with noises and simple qualitative networks. Computational results are shown for Boolean networks with noises and S-systems, where real data are not used because the proposed models are still conceptual and the quantity and quality of currently available data are not enough for the application of the proposed methods.  相似文献   

11.
12.
Qu A  Li R 《Biometrics》2006,62(2):379-391
Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this article, we propose an efficient estimation procedure for varying-coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and deal directly with both continuous and discrete response longitudinal data under the framework of generalized linear models. The proposed approach yields a more efficient estimator than the generalized estimation equation approach when the working correlation is misspecified. For varying-coefficient models, it is often of interest to test whether coefficient functions are time varying or time invariant. We propose a unified and efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test statistics have an asymptotic chi-squared distribution. In addition, the goodness-of-fit test is applied to test whether the model assumption is satisfied. The corresponding test is also useful for choosing basis functions and the number of knots for regression spline models in conjunction with the model selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte Carlo simulation studies. The proposed methodology is illustrated by the analysis of an acquired immune deficiency syndrome (AIDS) data set.  相似文献   

13.
Clustered interval-censored failure time data occur when the failure times of interest are clustered into small groups and known only to lie in certain intervals. A number of methods have been proposed for regression analysis of clustered failure time data, but most of them apply only to clustered right-censored data. In this paper, a sieve estimation procedure is proposed for fitting a Cox frailty model to clustered interval-censored failure time data. In particular, a two-step algorithm for parameter estimation is developed and the asymptotic properties of the resulting sieve maximum likelihood estimators are established. The finite sample properties of the proposed estimators are investigated through a simulation study and the method is illustrated by the data arising from a lymphatic filariasis study.  相似文献   

14.
We consider the problem of estimating the stiffness of an artery wall using a data assimilation method applied to a 3D fluid–structure interaction (FSI) model. Recalling previous works, we briefly present the FSI model, the data assimilation procedure and the segmentation algorithm. We present then two examples of the procedure using real data. First, we estimate the stiffness distribution of a silicon rubber tube from image data. Second, we present the estimation of aortic wall stiffness from real clinical data.  相似文献   

15.
Stochastic models for heterogeneous DNA sequences   总被引:10,自引:0,他引:10  
The composition of naturally occurring DNA sequences is often strikingly heterogeneous. In this paper, the DNA sequence is viewed as a stochastic process with local compositional properties determined by the states of a hidden Markov chain. The model used is a discrete-state, discreteoutcome version of a general model for non-stationary time series proposed by Kitagawa (1987). A smoothing algorithm is described which can be used to reconstruct the hidden process and produce graphic displays of the compositional structure of a sequence. The problem of parameter estimation is approached using likelihood methods and an EM algorithm for approximating the maximum likelihood estimate is derived. The methods are applied to sequences from yeast mitochondrial DNA, human and mouse mitochondrial DNAs, a human X chromosomal fragment and the complete genome of bacteriophage lambda.  相似文献   

16.
We present a procedure that optimally adjusts specified parameters of a mathematical model to describe a set of measured data. The technique integrates a dynamic systems-simulation language with a robust algorithm for nonlinear parameter estimation, and it can be implemented on a microcomputer. Sensitivity functions are generated that indicate how the operation of the model is affected by each updated parameter. This procedure offers a greater resolution of optimal parameter values than other, less rigorous methods. To illustrate this technique we have applied it to the model of human smooth pursuit eye movements proposed by D.A. Robinson and colleagues (1986).  相似文献   

17.
Standard optimization algorithms for maximizing likelihood may not be applicable to the estimation of those flexible multivariable models that are nonlinear in their parameters. For applications where the model's structure permits separating estimation of mutually exclusive subsets of parameters into distinct steps, we propose the alternating conditional estimation (ACE) algorithm. We validate the algorithm, in simulations, for estimation of two flexible extensions of Cox's proportional hazards model where the standard maximum partial likelihood estimation does not apply, with simultaneous modeling of (1) nonlinear and time‐dependent effects of continuous covariates on the hazard, and (2) nonlinear interaction and main effects of the same variable. We also apply the algorithm in real‐life analyses to estimate nonlinear and time‐dependent effects of prognostic factors for mortality in colon cancer. Analyses of both simulated and real‐life data illustrate good statistical properties of the ACE algorithm and its ability to yield new potentially useful insights about the data structure.  相似文献   

18.
Estimation of a population trend from a time series of abundance data is an important task in ecology, yet such estimation remains logistically and conceptually challenging in practice. First, the extent to which unequal intervals in the time series, due to missing observations or irregular sampling, compromise trend estimation is not well‐known. Furthermore, the predominant trend estimation method (loglinear regression of abundance data against time) ignores the possibility of process noise, while an alternative method (the ‘diffusion approximation’) ignores observation error in the abundance data. State‐space models that account for both process noise and observation error exist but have been little used. We study an adaptation of the exponential growth state‐space (EGSS) model for use with missing data in the time series, and we compare its trend estimation to the status quo methods. The EGSS model provides superior estimates of trend across wide ranges of time series length and sources of variation. The performance of the EGSS model even with half of the counts in the time series missing implies that trend estimates may be improved by diverting effort away from annual monitoring and towards increasing time series length or improving precision of the abundance estimates for years that data are collected.  相似文献   

19.
Serban N 《Biometrics》2007,63(2):531-539
MICE--multiple-peak identification, characterization, and estimation--is a procedure for estimating a lower bound of the number of frequency peaks and for estimating the frequency peak parameters. The leading application is protein structure determination using nuclear magnetic resonance (NMR) experiments. NMR frequency data are multiple-peak data, where each frequency peak corresponds to two connected atoms in the three-dimensional protein structure. We analyze the NMR frequency data through a series of steps: a preliminary step for separating the signal from the background followed by identification of local maxima up to a noise-level-dependent threshold, estimation of the frequency peak parameters using an iterative algorithm, and detection of mixtures of peaks using hypothesis testing.  相似文献   

20.
MOTIVATION: An important application of microarray technology is to relate gene expression profiles to various clinical phenotypes of patients. Success has been demonstrated in molecular classification of cancer in which the gene expression data serve as predictors and different types of cancer serve as a categorical outcome variable. However, there has been less research in linking gene expression profiles to the censored survival data such as patients' overall survival time or time to cancer relapse. It would be desirable to have models with good prediction accuracy and parsimony property. RESULTS: We propose to use the L(1) penalized estimation for the Cox model to select genes that are relevant to patients' survival and to build a predictive model for future prediction. The computational difficulty associated with the estimation in the high-dimensional and low-sample size settings can be efficiently solved by using the recently developed least-angle regression (LARS) method. Our simulation studies and application to real datasets on predicting survival after chemotherapy for patients with diffuse large B-cell lymphoma demonstrate that the proposed procedure, which we call the LARS-Cox procedure, can be used for identifying important genes that are related to time to death due to cancer and for building a parsimonious model for predicting the survival of future patients. The LARS-Cox regression gives better predictive performance than the L(2) penalized regression and a few other dimension-reduction based methods. CONCLUSIONS: We conclude that the proposed LARS-Cox procedure can be very useful in identifying genes relevant to survival phenotypes and in building a parsimonious predictive model that can be used for classifying future patients into clinically relevant high- and low-risk groups based on the gene expression profile and survival times of previous patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号