首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic stem cells differentiated on M15 cells have previously been shown to give rise to cells of the mesendodermal and definitive endodermal lineages. Here we demonstrate that neuroectodermal and mesodermal lineages can be derived from ES cells cultured on M15 cells and subsequently subjected to specific culture conditions, as confirmed by the expression of molecular markers. Prospective isolation and microarray analyses showed that neuroectodermal cells expressed anterior-to-posterior, as well as dorso-ventral regional markers, suggesting that this procedure could be used for the induction of cells belonging to a wide variety of neural lineages. Lateral mesoderm and paraxial mesoderm cells were also produced and their gene expression profiles were confirmed by microarray analyses. These results indicate that the M15 cell system provides a valuable tool for generating ES cell-derived lineage-specific cell types belonging to the three germ layers, namely neuroectoderm, mesoderm, and definitive endoderm.  相似文献   

2.
3.
4.
5.

Background

Environmental challenges during development affect the fetal epigenome, but the period(s) vulnerable to epigenetic dysregulation is(are) not clear. By employing a soy phytoestrogen, genistein, that is known to alter the epigenetic states of the Avy allele during embryogenesis, we have explored the sensitive period for epigenetic regulation. The post-implantation period, when de novo DNA methylation actively proceeds, is amenable to in vitro analysis using a mouse embryonic stem (ES) cell differentiation system.

Methods and Findings

Mouse ES cells were differentiated in the presence or absence of genistein, and DNA methylation patterns on day 10 were compared by microarray-based promoter methylation analysis coupled with a methylation-sensitive endonuclease (HpaII/McrBC)-dependent enrichment procedure. Moderate changes in methylation levels were observed in a subset of promoters following genistein treatment. Detailed investigation of the Ucp1 and Sytl1 promoters further revealed that genistein does not affect de novo methylation occurring between day 0 and day 4, but interferes with subsequent regulatory processes and leads to a decrease in methylation level for both promoters.

Conclusion

Genistein perturbed the methylation pattern of differentiated ES cells after de novo methylation. Our observations suggest that, for a subset of genes, regulation after de novo DNA methylation in the early embryo may be sensitive to genistein.  相似文献   

6.
7.
Pluripotent human embryonic stem cells (hESCs) have the distinguishing feature of innate capacity to allow indefinite self-renewal. This attribute continues until specific constraints or restrictions, such as DNA methylation, are imposed on the genome, usually accompanied by differentiation. With the aim of utilizing DNA methylation as a sign of early differentiation, we probed the genomic regions of hESCs, particularly focusing on stem cell marker (SCM) genes to identify regulatory sequences that display differentiation-sensitive alterations in DNA methylation. We show that the promoter regions of OCT4 and NANOG, but not SOX2, REX1 and FOXD3, undergo significant methylation during hESCs differentiation in which SCM genes are substantially repressed. Thus, following exposure to differentiation stimuli, OCT4 and NANOG gene loci are modified relatively rapidly by DNA methylation. Accordingly, we propose that the DNA methylation states of OCT4 and NANOG sequences may be utilized as barometers to determine the extent of hESC differentiation.  相似文献   

8.
Understanding endothelial cell (EC) differentiation is a step forward in tissue engineering, controlling angiogenesis, and endothelial dysfunction. We hypothesized that epigenetic activation of EC lineage specification genes is an important mediator of embryonic stem cell (ESC) differentiation into EC. Mouse ESC was differentiated by removing leukemia inhibitory factor (LIF) from the maintenance media in the presence or absence of the specific DNA methyltransferase (DNMT) inhibitor 5′-aza-2′-deoxycytidine (aza-dC). Expression of EC specification and marker genes was monitored by quantitative PCR, western, immunocytochemistry, and flow cytometry. Functionality of differentiated EC was assessed by angiogenesis assay. The methylation status in the proximal promoter CpGs of the mediators of EC differentiation VEGF-A, BMP4, and EPAS-1 as well as of the mature EC marker VE-cadherin was determined by bisulfite sequencing. ESC differentiation resulted in repression of OCT4 expression in both the absence and presence of aza-dC treatment. However, significant increase in angiogenesis and expression of the mediators of EC differentiation and EC-specific genes was only observed in aza-dC-treated cells. The DNMT inhibition-mediated increase in EC specification and marker gene expression was not associated with demethylation of these genes. These studies suggest that DNMT inhibition is an efficient inducer of EC differentiation from ESC.  相似文献   

9.
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.  相似文献   

10.
胚胎干细胞诱导分化为雄性生殖细胞的研究进展   总被引:2,自引:0,他引:2  
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新及无限分化潜能,理论上可以分化为生殖细胞。目前,在人及鼠中已有体外诱导ES细胞分化为成熟精子的报道。系统阐述影响ES细胞分化为雄性生殖细胞的内源性及外源性因素,并结合国内外最新研究进展总结其诱导分化方法,展望应用前景,期望为从事相关研究的学者提供参考。  相似文献   

11.
12.
Human embryonic stem cell and embryonic germ cell lines   总被引:33,自引:0,他引:33  
Undifferentiated human embryonic stem (ES) cells and embryonic germ (EG) cells can be cultured indefinitely and yet maintain the potential to form many or all of the differentiated cells in the body. Human ES and EG cells provide an exciting new model for understanding the differentiation and function of human tissue, offer new strategies for drug discovery and testing, and promise new therapies based on the transplantation of ES and EG cell-derived tissues.  相似文献   

13.
Embryonic stem cells (ESCs) are pluripotent, self‐renewing cells. These cells can be used in applications such as cell therapy, drug development, disease modeling, and the study of cellular differentiation. Investigating the interplay of epigenetics, genetics, and gene expression in control of pluripotence and differentiation could give important insights on how these cells function. One of the best known epigenetic factors is DNA methylation, which is a major mechanism for regulation of gene expression. This phenomenon is mostly seen in imprinted genes and X‐chromosome inactivation where DNA methylation of promoter regions leads to repression of gene expression. Differential DNA methylation of pluripotence‐associated genes such as Nanog and Oct4/Pou5f1 has been observed between pluripotent and differentiated cells. It is clear that tight regulation of DNA methylation is necessary for normal development. As more associations between aberrant DNA methylation and disease are reported, the demand for high‐throughput approaches for DNA methylation analysis has increased. In this article, we highlight these methods and discuss recent DNA methylation studies on ESCs. J. Cell. Biochem. 109: 1–6, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Presence of specific growth factors and feeder layers are thought to be important for in vitro embryonic stem cell (ESCs) differentiation. In this study, the effect of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs was evaluated. One-day-old embryoid body was cultured for 4?d in simple culture systems or on top of the MEFs, both in the presence or absence of BMP4. Data showed significant higher viability percent and proliferation rate in simple culture media compared to co-culture systems. Analysis of gene expression indicated that the germ cell-specific genes (VASA and Stra8) were expressed in a significant higher ratio in BMP4-treated cells in simple culture system. Also, the results of immunocytochemistry in simple culture systems showed that the mean percentage of immunostaining cells of VASA, the primordial germ cell (PGC) marker, was increased significantly in BMP4-treated cells compared with BMP4-free group. Meanwhile, CDH1, the late premiotic germ cell marker, showed no significant difference between these two groups. The results suggest that BMP4 is an efficient inducer in PGC derivation from mouse ESC. However, the employment of MEFs as feeder has no apparent effect on PGC derivation.  相似文献   

15.
Methylation change plays an important role in many cellular systems, including cancer development. During recent years, genome-wide or large-scale methylation data has become available thanks to rapid advances in high-throughput biotechnologies. So far, researchers have always used gene expression profiling to study disease subtypes and related therapies. In this study, we investigated methylation profiles in 30 breast cancer cell lines using methylation data generated by microarray technologies. Strong variation of the number of methylation peaks was found among these 30 cell lines; however, more peaks were found in the upstream regions than in downstream regions of genes. We further grouped the methylation profiles of these cell lines into three consensus clusters. Finally, we performed an integrative analysis of breast cancer cell lines using both methylation and gene-expression profiling data. There was no significant correlation between methylation-profiling subtypes and gene-expression profiling subtypes, suggesting the complex nature of methylation in the regulation of gene expression. However, we found basal B cell lines appeared exclusively in two methylation clusters. Although these results are preliminary, this study suggests that methylation profiling might be promising in disease subtype classification and the development of therapeutic strategies.  相似文献   

16.
17.

Background  

We performed a comparative analysis of the genome-wide DNA methylation profiles from three human embryonic stem cell (HESC) lines. It had previously been shown that HESC lines had significantly higher non-CG methylation than differentiated cells, and we therefore asked whether these sites were conserved across cell lines.  相似文献   

18.
19.
The activity of the P(CMV IE) promoter was studied during the differentiation of ES cells into neurons. In order to do this, stable embryonic stem (ES) cell lines that express enhanced green fluorescent protein (EGFP) under the control of P(CMV IE) were created and these ES cells were differentiated by aggregation of cells in the presence of retinoic acid (RA). Based on our observations that the activity of P(CMV IE) was highest in undifferentiated cells, and that cell-cell interaction and addition of RA that lead to enhanced cell proliferation also increased expression from P(CMV IE), we hypothesized that the activity of P(CMV IE) was positively regulated in cycling cells. However, when analysis was done at the single cell level it was found that BrdU label and EGFP expression were not correlated. EGFP expression was found to be down-regulated in many cells that were BrdU positive and conversely there were significant numbers of BrdU negative cells that were EGFP positive. Further, P(CMV IE) activity was not observed in cells that were nestin positive or in differentiated neurons, but P(CMV IE) was active in cells with a fibroblast-like morphology. Finally, several proteins present in undifferentiated ES cells were found to bind to regulatory regions of P(CMV IE). These were absent when cells were aggregated in the presence of RA. The above results have implications for expression of transgenes in ES cells as well as providing new insight into the mechanism of lineage restriction.  相似文献   

20.
Embryonic stem cells are a unique cell population capable both of self-renewal and of differentiation into all tissues in the adult organism. Despite the central importance of these cells, little information is available regarding the intracellular signaling pathways that govern self-renewal or early steps in the differentiation program. Embryonic stem cell growth and differentiation correlates with kinase activities, but with the exception of the JAK/STAT3 pathway, the relevant substrates are unknown. To identify candidate phosphoproteins with potential relevance to embryonic stem cell differentiation, a systems biology approach was used. Proteins were purified using phosphoprotein affinity columns, then separated by two-dimensional gel electrophoresis, and detected by silver stain before being identified by tandem mass spectrometry. By comparing preparations from undifferentiated and differentiating mouse embryonic stem cells, a set of proteins was identified that exhibited altered post-translational modifications that correlated with differentiation state. Evidence for altered post-translational modification included altered gel mobility, altered recovery after affinity purification, and direct mass spectra evidence. Affymetrix microarray analysis indicated that gene expression levels of these same proteins had minimal variability over the same differentiation period. Bioinformatic annotations indicated that this set of proteins is enriched with chromatin remodeling, catabolic, and chaperone functions. This set of candidate phosphoprotein regulators of stem cell differentiation includes products of genes previously noted to be enriched in embryonic stem cells at the mRNA expression level as well as proteins not associated previously with stem cell differentiation status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号