首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.  相似文献   

2.
The ontogenetic allometry of long bone proportions is poorly understood in Mammalia. It has previously been suggested that during mammalian ontogeny long bone proportions grow more slender (positive allometry; length ∝ circumference>1.0), although this conclusion was based upon data from a few small‐bodied taxa. It remains unknown how ontogenetic long bone allometry varies across Mammalia in terms of both taxonomy and body size. We collected long bone length and circumference data for ontogenetic samples of 22 species of mammals spanning six major clades and three orders of magnitude in body mass. Using reduced major axis bivariate regressions to compare bone length to circumference, we found that isometry and positive allometry are the most widespread patterns of growth across mammals. Negative allometry (i.e., bones growing more robust during ontogeny) occurs in mammals but is largely restricted to cetartiodactyls. Using regression slope as a proxy for long bone allometry, we compared long bone allometry to life history and organismal traits. Neonatal body mass, adult body mass, and growth rate have a negative relationship with long bone allometry. At an adult mass of roughly 15–20 kg, long bone growth shifts from positive allometry to mainly isometry and negative allometry. There were no significant relationships between ontogenetic long bone allometry and either cursoriality or basal metabolic rate. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The mechanical environment of limb joints constantly changes during growth due to growth-related changes in muscle and tendon lengths, long bone dimensions, and body mass. The size and shape of limb joint surfaces must therefore also change throughout post-natal development in order to maintain normal joint function. Frost's (1979, 1999) chondral modeling theory proposed that joint congruence is maintained in mammalian limbs throughout postnatal ontogeny because cartilage growth in articular regions is regulated in part by mechanical load. This paper incorporates recent findings concerning the distribution of stress in developing articular units, the response of chondrocytes to mechanically induced deformation, and the development of articular cartilage in order to expand upon Frost's chondral modeling theory. The theory presented here assumes that muscular contraction during post-natal locomotor development produces regional fluctuating, intermittent hydrostatic pressure within the articular cartilage of limb joints. The model also predicts that peak levels of hydrostatic pressure in articular cartilage increase between birth and adulthood. Finally, the chondral modeling theory proposes that the cell-cell and cell-extracellular matrix interactions within immature articular cartilage resulting from mechanically induced changes in hydrostatic pressure regulate the metabolic activity of chondrocytes. Site-specific rates of articular cartilage growth are therefore regulated in part by the magnitude, frequency, and orientation of prevailing loading vectors. The chondral modeling response maintains a normal kinematic pathway as the magnitude and direction of joint loads change throughout ontogeny. The chondral modeling theory also explains ontogenetic scaling patterns of limb joint curvature observed in mammals. The chondral modeling response is therefore an important physiological mechanism that maintains the match between skeletal structure, function, and locomotor performance throughout mammalian ontogeny and phylogeny.  相似文献   

4.
Little ontogenetic data exist to indicate whether muscular organization of neonates reflects adult locomotion (e.g., leaping) or infant activities like clinging or the initial quadrupedal phase of locomotion that typifies most infant primates. In the present study, five species of primates with contrasting modes of locomotion were examined. Twenty-eight preserved neonatal and adult cadavers were studied by careful dissection of the hip, thigh, and leg muscles. Wet weights were taken of limb muscles after removal, and the muscles were combined into major functional groups (e.g., flexors, extensors) of each limb segment. Results demonstrate that the distribution of muscle mass within the thigh and within the leg are similar between neonates and adults for all species, with major groups varying by 5% or less in all but two age comparisons. Crural indices of the neonates are nearly identical to those of the adults, but leg/thigh muscle mass ratios were higher in the neonates. Species vary greatly in the percentage of adult limb segment muscle mass present in neonates, with Tarsius syrichta having the greatest percentage for all segments and two lemurids showing the least. These results primarily track differences in relative body mass at birth rather than developmental differences. The adaptive distribution of muscle, as discussed previously for adult prosimians, appears to be established at birth. Neonates of leaping species already have much larger quadriceps muscles than quadrupeds. Differences between large- and small-bodied leapers (e.g., pronounced superficial plantarflexor masses in tarsiers and pronounced deep plantarflexor masses in sifakas) also are present in neonates. Ratios of muscle mass over body mass are smaller in all neonates than in their adult counterparts, suggesting that the neonates are relatively poorly muscled, and that muscle mass must increase with positive allometry during growth.  相似文献   

5.
Primate quadrupedal kinematics differ from those of other mammals. Several researchers have suggested that primate kinematics are adaptive for safe travel in an arboreal, small-branch niche. This study tests a compatible hypothesis that primate kinematics are related to their limb mass distribution patterns. Primates have more distally concentrated limb mass than most other mammals due to their grasping hands and feet. Experimental studies have shown that increasing distal limb mass by adding weights to the limbs of humans and dogs influences kinematics. Adding weights to distal limb elements increases the natural period of a limb's oscillation, leading to relatively long swing and stride durations. It is therefore possible that primates' distal limb mass is responsible for some of their unique kinematics. This hypothesis was tested using a longitudinal ontogenetic sample of infant baboons (Papio cynocephalus). Because limb mass distribution changes with age in infant primates, this project examined how these changes influence locomotor kinematics within individuals. The baboons in this sample showed a shift in their kinematics as their limb mass distributions changed during ontogeny. When their limb mass was most distally concentrated (at young ages), stride frequencies were relatively low, stride lengths were relatively long, and stance durations were relatively long compared to older ages when limb mass was more proximally concentrated. These results suggest that the evolution of primate quadrupedal kinematics was tied to the evolution of grasping hands and feet.  相似文献   

6.
We developed a method based on interactive B-spline solids for estimating and visualizing biomechanically important parameters for animal body segments. Although the method is most useful for assessing the importance of unknowns in extinct animals, such as body contours, muscle bulk, or inertial parameters, it is also useful for non-invasive measurement of segmental dimensions in extant animals. Points measured directly from bodies or skeletons are digitized and visualized on a computer, and then a B-spline solid is fitted to enclose these points, allowing quantification of segment dimensions. The method is computationally fast enough so that software implementations can interactively deform the shape of body segments (by warping the solid) or adjust the shape quantitatively (e.g., expanding the solid boundary by some percentage or a specific distance beyond measured skeletal coordinates). As the shape changes, the resulting changes in segment mass, center of mass (CM), and moments of inertia can be recomputed immediately. Volumes of reduced or increased density can be embedded to represent lungs, bones, or other structures within the body. The method was validated by reconstructing an ostrich body from a fleshed and defleshed carcass and comparing the estimated dimensions to empirically measured values from the original carcass. We then used the method to calculate the segmental masses, centers of mass, and moments of inertia for an adult Tyrannosaurus rex, with measurements taken directly from a complete skeleton. We compare these results to other estimates, using the model to compute the sensitivities of unknown parameter values based upon 30 different combinations of trunk, lung and air sac, and hindlimb dimensions. The conclusion that T. rex was not an exceptionally fast runner remains strongly supported by our models-the main area of ambiguity for estimating running ability seems to be estimating fascicle lengths, not body dimensions. Additionally, the craniad position of the CM in all of our models reinforces the notion that T. rex did not stand or move with extremely columnar, elephantine limbs. It required some flexion in the limbs to stand still, but how much flexion depends directly on where its CM is assumed to lie. Finally we used our model to test an unsolved problem in dinosaur biomechanics: how fast a huge biped like T. rex could turn. Depending on the assumptions, our whole body model integrated with a musculoskeletal model estimates that turning 45 degrees on one leg could be achieved slowly, in about 1-2s.  相似文献   

7.
Primates have more distally distributed limb muscle mass compared to most nonprimate mammals. The heavy distal limbs of primates are likely related to their strong manual and pedal grasping abilities, and interspecific differences in limb mass distributions among primates are correlated with the amount of time spent on arboreal supports. Within primate species, individuals at different developmental stages appear to differ in limb mass distribution patterns. For example infant macaques have more distally distributed limb mass at young ages. A shift from distal to proximal limb mass concentrations coincides with a shift from dependent travel (grasping their mother's hair) to independent locomotion. Because the functional demands placed on limbs may differ between taxa, understanding the ontogeny of limb mass distribution patterns is likely an essential element in interpreting the diversity of limb mass distribution patterns present in adult primates. This study examines changes in limb inertial properties during ontogeny in a longitudinal sample of infant baboons (Papio cynocephalus). The results of this study show that infant baboons undergo a transition from distal to proximal limb mass distribution patterns. This transition in limb mass distribution coincides with the transition from dependent to independent locomotion during infant development. Compared to more arboreal macaques, infant baboons undergo a faster transition to more proximal limb mass distribution patterns. These results suggest that functional demands placed on the limbs during ontogeny have a strong impact on the development of limb mass distribution patterns.  相似文献   

8.
Domestication is a type of experimental evolution in which humans have artificially selected for specific desired traits. Selected strain animals can be utilized to identify correlated responses by comparing them to the wild strain. In particular, domestic turkeys have been selected for increased body mass and high‐growth rate, most significantly over the past 60 years. Yet it remains unclear how artificial selection has affected the morphology and evolution of the musculoskeletal system as a whole. Here, we compare growth rate over 21 weeks, hind limb bone scaling across ontogeny via in vivo CT scanning, and muscle proportions in wild and domestic turkeys to identify differences in structural scaling and the potential contributions of selection and developmental plasticity to whole‐organism morphology. The domestic turkeys grew at a higher rate (0.14 kg/day vs. 0.05 kg/day) and reached over 3 times the body mass of wild birds. Comparing the proportional muscle masses in adult turkeys, only the trunk had a greater mass ratio in the domestic turkey, driven solely by M. pectoralis (2.8 times larger). The proportional increase in only breast meat and no other muscles highlights the surgical precision attainable with artificial selection. The domestic turkey femur and tibiotarsus displayed increases in polar moment of area, apparently maintaining torsional strength as body mass increased. The lack of dimensional change in the more vertically held tarsometatarsus is consistent with the pattern expected due to developmental plasticity. These results from the domestic turkey emphasize that there are morphological limits to preserving the balance between growth and function, and varying rates of trait evolution can further complicate this equilibrium.  相似文献   

9.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

10.
James L. Maino  Michael R. Kearney 《Oikos》2015,124(12):1564-1570
The uptake of resources from the environment is a basic feature of all life. Consumption rate has been found to scale with body size with an exponent close to unity across diverse organisms. However, past analyses have ignored the important distinction between ontogenetic and interspecific size comparisons. Using principles of dynamic energy budget theory, we present a mechanistic model for the body mass scaling of consumption, which separates interspecific size effects from ontogenetic size effects. Our model predicts uptake to scale with surface‐area (mass2/3) during ontogenetic growth but more quickly (between mass3/4 and mass1) for interspecific comparisons. Available data for 41 insect species on consumption and assimilation during ontogeny provides strong empirical support for our theoretical predictions. Specifically, consumption rate scaled interspecifically with an exponent close to unity (0.89) but during ontogenetic growth scaled more slowly with an exponent of 0.70. Assimilation rate (consumption minus defecation) through ontogeny scaled more slowly than consumption due to a decrease in assimilation efficiency as insects grow. Our results highlight how body size imposes different constraints on metabolism depending on whether the size comparison is ontogenetic or inter‐specific. Synthesis One of the most robust patterns in biology is the effect of body size on metabolism – a relationship that underlies the rapidly emerging field of metabolic ecology. However, the precise energetic constraints imposed by body size have been notoriously difficult to entangle. Here we show that the constraints imposed on metabolism by body size are different depending on whether the size comparison is ontogenetic or interspecific. Using a single unifying theory of animal metabolism and a newly compiled data set on insect consumption and assimilation rates, we show that interspecific comparisons generally lead to the estimation of higher scaling exponents compared with ontogenetic comparisons. Our results help to explain large variation in estimated metabolic scaling exponents and will encourage future studies in metabolic ecology to make the important distinction between ontogenetic and evolutionary size changes.  相似文献   

11.
Smith  Robin J.  Martens  Koen 《Hydrobiologia》2000,419(1):31-63
The chaetotaxy (shape, structure and distribution of setae) of appendages and valve allometry during the post embryonic ontogeny of the cyprididine ostracod Eucypris virens are described. It is shown that the basic ontogenetic development of E. virens is very similar to that of other species of the family Cyprididae. During ontogeny, the chaetotaxy shows continual development on all podomeres of the limbs with the exception of the last podomere on the antennulae. The long setae on the exopodite and protopodite of the antennae have a natatory function until the actual natatory setae develop in later instars. Aesthetascs (presumed chemoreceptors) ya and y3 are the first to develop and may have an important function in the first instars. Cyprididae require a pediform limb in the posterior of the body presumably to help them to attach to substrates and this is reflected by the pediform nature of one limb at all times throughout all instars. This study has also shown that the fifth limb is most probably of thoracic origin and hence ostracods have only one pair of maxillae.  相似文献   

12.
In Atlantic bottlenose dolphins (Tursiops truncatus) the thickness and lipid content of blubber (the integument's specialized hypodermis) varies across ontogeny and with reproductive and nutritional state. Because the integument comprises up to 25% of total body mass in this species, ontogenetic changes in its lipid content may influence whole body buoyancy. The density and volume of the integument were measured and its buoyancy calculated across an ontogenetic series of dolphins and in pregnant and emaciated adults (total n= 45). Regional differences between the metabolically labile trunk integument and the structural tailstock integument were also investigated. Mean densities of both trunk and tailstock integument were similar across life history categories (trunk = 1,040.7 ± 14.1 kg/m3; tailstock = 1,077.1 ± 21.2 kg/m3) and were statistically similar to the density of seawater (1,026 kg/m3). The mean buoyant force of integument from the trunk (−1.01 ± 1.74 N) and tailstock (−0.30 ± 0.21 N) did not vary significantly across ontogeny. In contrast, pregnancy and emaciation did influence the integument's buoyancy, which ranged between 9 N and −45 N in these categories. Although neutral during growth, the integument's contribution to whole body buoyancy can be influenced by an individual's reproductive and nutritional status.  相似文献   

13.
Allosaurus is one of the most common Mesozoic theropod dinosaurs. We present a histological analysis to assess its growth strategy and ontogenetic limb bone scaling. Based on an ontogenetic series of humeral, ulnar, femoral, and tibial sections of fibrolamellar bone, we estimate the ages of the largest individuals in the sample to be between 13-19 years. Growth curve reconstruction suggests that maximum growth occurred at 15 years, when body mass increased 148 kg/year. Based on larger bones of Allosaurus, we estimate an upper age limit of between 22-28 years of age, which is similar to preliminary data for other large theropods. Both Model I and Model II regression analyses suggest that relative to the length of the femur, the lengths of the humerus, ulna, and tibia increase in length more slowly than isometry predicts. That pattern of limb scaling in Allosaurus is similar to those in other large theropods such as the tyrannosaurids. Phylogenetic optimization suggests that large theropods independently evolved reduced humeral, ulnar, and tibial lengths by a phyletic reduction in longitudinal growth relative to the femur.  相似文献   

14.
The present study investigates relationships among size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis . Maximal running speed, body mass, snout-vent length, tail length, fore- and hind limb spans and thigh muscle mass were measured in 68 field-fresh individuals spanning the entire ontogenetic size range (1.3 48 g). Relative lengths of both foreand hind limbs decrease with increasing body mass (= negative allometry), whereas relative tail length and thigh muscle mass increase with body mass (= positive allometry). Repeatable and significant differences in maximal running speed exist among individuals. Maximal running speed scales as (body mass)0.161, and 59% of the variation in maximal speed was related to body mass. Based on the results of the present and previous studies, data on scaling of body proportions alone appear inadequate to infer scaling relationships of functional characters such as top speed.
Surprisingly, individual variation in maximal speed is not related to individual variation in shape (relative limb, tail and body lengths). These components of overall shape are not independent; individuals tended to have either relatively long or relatively short limbs, tails and bodies for their body mass. Even the significant difference in multivariate shape between adult males and females has no measurable consequences for maximal speed. Speeds of field-fresh animals did not vary on a seasonal basis, and eight weeks of captivity had no effect on maximal running speeds. Gravid females and long-term (obese) captive lizards were both approximately 12% slower than field-fresh lizards.  相似文献   

15.
The human pattern of growth and development (ontogeny) appears to differ markedly from patterns of ontogeny in other primate species. Humans present complex and sinuous growth curves for both body mass and stature. Many human proportions change dramatically during ontogeny, as we reach sizes that are among the largest of living primates. Perhaps most obviously, humans grow for a long time, with the interval between birth and maturation exceeding that of all other primate species. These ontogenetic traits are as distinctive as other key derived human traits, such as a large brain and language. Ontogenetic adaptations are also linked to human social organization, particularly by necessitating high levels of parental investment during the first several years of life.  相似文献   

16.
Peter  Dodson 《Journal of Zoology》1975,175(3):315-355
Allometric coefficients are calculated for 27 cranial and 39 postcranial measurements of a growth series of Alligator mississipiensis that spans a size range of an order of magnitude. Developmental patterns are quite-well canalized, as expressed in coefficients of variation of 8 to 10 for isometric variables. A multivariate expression of allometry is discovered using principal components analysis. A number of allometric coefficients have expression in known aspects of the life history of Alligator. Negative allometry of limb lengths and limb proportions shows an ontogenetic decrease in importance of the limbs throughout life, and observations show large animals to be more dependent on water than small ones. Isometry of skull length with respect to body length represents an adaptation to ever-increasing size of prey items as body size increases. Positive allometry of snout length and size of the upper temporal fenestrae finds parallel in the structure of the highly aquatic gavial.  相似文献   

17.
Allometric relationships describe the proportional covariation between morphological, physiological, or life‐history traits and the size of the organisms. Evolutionary allometries estimated among species are expected to result from species differences in ontogenetic allometry, but it remains uncertain whether ontogenetic allometric parameters and particularly the ontogenetic slope can evolve. In bovids, the nonlinear evolutionary allometry between horn length and body mass in males suggests systematic changes in ontogenetic allometry with increasing species body mass. To test this hypothesis, we estimated ontogenetic allometry between horn length and body mass in males and females of 19 bovid species ranging from ca. 5 to 700 kg. Ontogenetic allometry changed systematically with species body mass from steep ontogenetic allometries over a short period of horn growth in small species to shallow allometry with the growth period of horns matching the period of body mass increase in the largest species. Intermediate species displayed steep allometry over long period of horn growth. Females tended to display shallower ontogenetic allometry with longer horn growth compared to males, but these differences were weak and highly variable. These findings show that ontogenetic allometric slope evolved across species possibly as a response to size‐related changes in the selection pressures acting on horn length and body mass.  相似文献   

18.
During the evolution of therian mammals, the two-segmented, sprawled tetrapod limbs were transformed into three-segmented limbs in parasagittal zig-zag configuration (three-segment limb hypothesis). As a consequence, the functional correspondence of limb segments has changed (now: scapula to thigh, upper arm to shank, fore arm plus hand to foot). Therefore, the scapula was taken into account in the current study of the postnatal growth of the postcranial skeleton in two small mammalian species (Tupaia glis, Galea musteloides). Comparisons were made between the functionally equivalent elements and not in the traditional way between serially homologous segments. This study presents a test of the three-segment limb hypothesis which predicts a greater ontogenetic congruence in the functionally equivalent elements in fore and hind limbs than in the serially homologous elements. A growth sequence, with decreasing regression coefficients from proximal to distal, was observed in both species under study. This proximo-distal growth sequence is assumed to be ancestral in the ontogeny of eutherian mammals. Different reproductive modes have evolved within eutherian mammals. To test the influence of different life histories on ontogenetic scaling during postnatal growth, one species with altricial juveniles (Tupaia glis) assumed to be the ancestral mode of development for eutherians and one species with derived, precocial young (Galea musteloides) were selected. The growth series covered postnatal development from the first successive steps with a lifted belly to the adult locomotory pattern; thus, functionally equivalent developmental stages were compared. The higher number of allometrically positive or isometrically growing segments in the altricial mammalian species was interpreted as a remnant of the fast growth period in the nest without great locomotor demands, and the clearly negative allometry in nearly all segments in the precocial young was interpreted as a response to the demand on early locomotor activity. Different life histories seem to have a strong influence on postnatal ontogenetic scaling; the effects of the developmental differences are still observable when comparing adults of the two species.  相似文献   

19.
20.
Vizcaíno, S.F., Blanco, R.E., Bender, J.B. & Milne, N. 2010: Proportions and function of the limbs of glyptodonts. Lethaia, Vol. 44, pp. 93–101. This study examines the limb bone proportions and strength of glyptodonts (Xenarthra, Cingulata). Two methods are used to estimate the body mass and location of the centre of gravity of the articulated specimens. These estimates, together with measurements of the femur and humerus, are used to calculate strength indicators (SI). The other long bones of the limbs are used to calculate limb proportion indices that give an indication of digging ability, speed, and limb dominance in armadillos, the glyptodonts’ living closest relatives. The results show that regardless of how the body mass and centre of gravity are calculated, the majority of the glyptodont’s weight is borne by the hindlimbs. The SI calculations show that femora are sturdy enough to bear these loads. The fact that the femora have higher SI than the humerii indicates that sometimes the hindlimbs are required to bear an even greater proportion of the body weight, possibly when rising to a bipedal posture or pivoting on their hindlimbs to deliver a blow with their armoured tail. The analysis of limb proportions indicates that both the hindlimb and the forelimb have proportions that correlate strongly with body mass. This outcome supports the other results, but also shows that forelimbs must be also involved in manoeuvring the glyptodont body. □Glyptodonts, Mammalia, Xenarthra, limbs, strength indicators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号