首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
Chen YF  Tung CL  Chang Y  Hsiao WC  Su LJ  Sun HS 《Genomics》2011,97(4):205-213
EBV infects more than 90% of the human population and persists in most individuals as a latent infection where the viral genome is silenced by host-driven methylation. The lytic cycle is initiated when the viral protein Zta binds to methylated BRLF1 and BRRF1 promoters. Although studies reveal the role of Zta and methylation changes in the viral genome upon EBV infection to reactivation, whether Zta plays any role in alteration of methylation in the host genome remains unknown. Using an inducible model, we demonstrate that global DNA methylation, based on whole-genome 5-methylcytosine content, and regional DNA methylation in repetitive elements, imprinting genes and the X chromosome, remains unchanged in response to Zta expression. Expression of DNA methyltransferases was also unaffected by ectopically expressed Zta. Our data imply that alteration of host gene expression following EBV reactivation may reflect methylation-independent Zta-mediated gene activation and not epigenetic modification of the host genome.  相似文献   

7.
8.
9.
10.
11.
12.
The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Epstein-Barr virus (EBV) utilizes a completely different mode of DNA replication during the lytic cycle than that employed during latency. The latency origin of replication, ori-P, which functions in the replication of the latent episomal form of the EBV genome, requires only a single virally encoded protein, EBNA-1, for its activity. During the lytic cycle, a separate origin, ori-Lyt, is utilized. Relatively little is known about the trans-acting proteins involved in ori-Lyt replication. We established a cotransfection-replication assay to identify EBV genes whose products are required for replication of ori-Lyt. In this assay, a BamHI-H plasmid containing ori-Lyt was replicated in Vero cells cotransfected with the BamHI-H target, the three EBV lytic-cycle transactivators Zta, Rta, and Mta, and the EBV genome provided in the form of a set of six overlapping cosmid clones. By removing individual cosmids from the cotransfection mixture, we found that only three of the six cosmids were necessary for ori-Lyt replication. Subcloning of the essential cosmids led to the identification of six EBV genes that encode replication proteins. These genes and their functions (either known or predicted on the basis of sequence comparison with herpes simplex virus) are BALF5, the DNA polymerase; BALF2, the single-stranded DNA-binding protein homolog; BMRF1, the DNA polymerase processivity factor; BSLF1 and BBLF4, the primase and helicase homologs; and BBLF2/3, a potential homolog of the third component of the helicase-primase complex. In addition, ori-Lyt replication in this cotransfection assay was also dependent on one or more genes provided by the EBV SalI-F fragment and on the three lytic-cycle transactivators Zta, Rta, and Mta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号