首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Polyclonal antisera directed against conserved and subtype-specific peptide sequences of the alpha-subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to characterize the nature of mammalian sperm G proteins and to determine whether their localization was consistent with their proposed roles in mediating ZP3-induced acrosomal exocytosis. Mouse and guinea pig sperm exhibit positive immunofluorescence in the acrosomal region using an antiserum directed against a peptide region common to all alpha-subunits of G proteins (G alpha). The immunofluorescence disappears after sperm have undergone the acrosome reaction, suggesting that the immunoreactive material is associated with the plasma membrane/outer acrosomal membrane region overlying the acrosome. The presence of G proteins in this region is confirmed by the presence of a Mr 41,000 substrate for pertussis toxin (PT)-catalyzed [32P]ADP-ribosylation in purified plasma membrane/outer acrosomal membrane hybrid vesicles obtained from acrosome-reacted guinea pig sperm. Immunoprecipitation and polyacrylamide gel electrophoresis of PT-catalyzed [32P]ADP-ribosylated protein(s) using anti-peptide antisera generated against sequences unique to Gi alpha 1, Gi alpha 2, and Gi alpha 3 confirm the existence of all three Gi subtypes in mouse sperm extracts. Indirect immunofluorescence using an antiserum directed against a peptide region present in Gz alpha, a PT-insensitive G protein, demonstrates positive immunoreactivity in the postacrosomal/lateral face region of the mouse sperm head. This immunoreactivity is retained during acrosomal exocytosis in response to solubilized ZP and then disappears subsequent to this exocytotic event. These data demonstrate that Gi protein alpha-subunits are present in the acrosomal region of mammalian sperm, consistent with their postulated role in regulating ZP3-mediated acrosomal exocytosis, and that PT-insensitive Gz alpha is found in a region of the sperm head distinct from that of the Gi alpha subunits.  相似文献   

3.
In purified preparations of human erythrocyte GTP-binding proteins, we have identified a new substrate for pertussis toxin, which has an apparent molecular mass of 43 kDa by silver and Coomassie Blue staining. Pertussis toxin-catalyzed ADP-ribosylation of the 43-kDa protein is inhibited by Mg2+ ion and this inhibition is relieved by the co-addition of micromolar amounts of guanine nucleotides. GTP affects the ADP-ribosylation with a K value of 0.8 microM. Addition of a 10-fold molar excess of purified beta gamma subunits (Mr = 35,000 beta; and Mr = 7,000 gamma) of other GTP-binding proteins results in a significant decrease in the pertussis toxin-mediated ADP-ribosylation of the 43-kDa protein. Treatment of the GTP-binding proteins with guanosine 5'-O-(thiotriphosphate) and 50 mM MgCl2 resulted in shifting of the 43-kDa protein from 4 S to 2 S on sucrose density gradients. Immunoblotting analysis of the 43-kDa protein with the antiserum A-569, raised against a peptide whose sequence is found in the alpha subunits of all of the known GTP-binding, signal-transducing proteins (Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 265-259) showed that the 43-kDa protein is specifically recognized by the common peptide antiserum. A pertussis toxin substrate of similar molecular weight was observed in human erythrocyte membranes, bovine brain membranes, membranes made from the pituitary cell line GH4C1, in partially purified GTP-binding protein preparations of rat liver, and in human neutrophil membranes. Treatment of neutrophils with pertussis toxin prior to preparation of the membranes resulted in abolishment of the radiolabeling of this protein. From these data, we conclude that we have found a new pertussis toxin substrate that is a likely GTP-binding protein.  相似文献   

4.
The guanine nucleotide-binding proteins (G proteins) are heterotrimers composed of alpha-, beta-, and gamma-subunits, and each of the constituent subunits has been reported to exhibit a molecular heterogeneity. The beta- and gamma-subunits form a functional unit that does not separate under physiological conditions and interact with various alpha-subunits that appear to mainly regulate specific effectors. We thus purified the beta gamma-complex of G proteins from bovine brain membranes and found that there were chromatographically multiple forms of beta gamma-subunits which could be reassociated with various alpha-subunits. The major findings observed with the purified proteins were summarized as follows. (a) The constituent beta gamma-subunits in the brain membrane G proteins appeared to be divided into two groups in their elution profiles from a hydrophobic column. (b) Each of the two groups contained at least five different components of beta gamma-subunits upon analyzing by a high-resolution, anion-exchange column. (c) Distribution of the heterogeneous beta gamma-subunits was not identical among various trimeric G proteins such as Gi, G0, and Gs. (d) The heterogeneous beta gamma-components were able to interact with a specific alpha-subunit resulting in the alpha beta gamma-trimer that served as the substrate of pertussis toxin-catalyzed ADP-ribosylation. (e) However, the apparent abilities of some beta gamma-subunits to support the toxin-induced modification were significantly different in a special comparison between the two beta gamma-groups that were eluted from the hydrophobic column. These results indicated that there were multiple forms of beta gamma-subunits associating with the specific alpha-subunit of a trimeric G protein and that some of those had different affinities for various alpha-subunits in terms of their tight associations. A possible role of the heterogeneity in beta gamma-subunits is also discussed in terms of G protein-mediated signal transductions.  相似文献   

5.
Pertussis toxin catalyzes incorporation of 20.2 pmol of ADP-ribose/mg of protein into approximately 40-kDa protein(s) in human neutrophil membranes compared with 14.1 pmol/mg in bovine brain membranes. Based on these measurements we estimate that pertussis toxin substrate(s) should represent at least 0.085% of total membrane protein in neutrophils. Both brain and neutrophil membranes show high concentrations (0.34 versus 0.16% of total membrane protein, respectively) of the common beta subunit of guanine nucleotide binding proteins. Affinity purified antibodies specific for Go-alpha fail to detect any protein in immunoblots of neutrophil membranes (150 micrograms) under conditions where as little as 10 ng of purified Go-alpha is detectable, and Go-alpha is readily detected in brain membranes (100 micrograms). An antiserum against transducin that cross-reacts strongly with Gi-alpha, detects as little as 5 ng of purified Gi-alpha and readily detects Gi-alpha in brain membranes, but in neutrophil membranes, the antiserum detects an approximately 40-kDa band that corresponds to less than 10% of the expected amount of pertussis toxin substrate(s). The results show that human neutrophil membranes contain relatively large amounts of pertussis toxin substrate(s), but that the predominant pertussis toxin substrate is immunochemically distinct from previously identified substrates, transducin, Gi, and Go.  相似文献   

6.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

7.
A cDNA encoding a previously unknown G protein alpha-subunit lacking the site for pertussis toxin-catalyzed ADP-ribosylation was recently cloned and its putative protein product named Gz (Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3066-3070) or Gx (Matsuoka, M., Itoh, H. Kozasa, T., and Kaziro, Y. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5384-5388). A synthetic peptide corresponding to the deduced carboxyl-terminal decapeptide of this putative protein (alpha z) has been synthesized and used to prepare a polyclonal rabbit antiserum directed against the protein. The specificity and cross-reactivity of this antiserum was assessed using bacterially expressed recombinant G protein alpha-subunit fusion proteins (r alpha). The crude antiserum strongly recognizes r alpha z in immunoblots. Pretreatment of antiserum with antigen peptide greatly reduces the interaction of the antiserum with r alpha z. Affinity purified antiserum strongly recognizes expressed r alpha z, does not recognize r alpha s1, r alpha s1, r alpha o, or r alpha i3, and very weakly interacts with r alpha i1 and r alpha i2. In contrast, the alpha-subunits of purified bovine brain Gi1 and human erythrocyte Gi2 and Gi3 did not react with the alpha z-antiserum. Partially purified mixtures of human erythrocyte G proteins contain a 41-kDa protein that reacts specifically in immunoblots with both crude and affinity purified alpha z-specific antiserum. Quantitative immunoblotting using r alpha z as a standard indicates that there is 60-100 ng of alpha z/micrograms of 40/41-kDa alpha-subunit protein in partially purified human erythrocyte G protein preparations. We conclude that we have identified the alpha z gene product as a 41-kDa trace protein in human erythrocytes.  相似文献   

8.
The wide range of functions attributed to GTP-binding regulatory proteins (G proteins) is reflected in the structural diversity which exists among the alpha, beta, and gamma subunits of G proteins. Recently two cDNA clones encoding beta subunits, beta 1 and beta 2, were isolated from bovine and human cDNA libraries. We report here that the beta 2 gene encodes the 35-kilodalton (kDa) component of the beta 35/beta 36 subunit of G proteins and that the beta 1 gene encodes the 36-kilodalton component. The in vitro translation product of the beta 2 cDNA co-migrates with the 35-kDa beta subunit (beta 35), while the in vitro product of the beta 1 cDNA co-migrates with the 36-kDa beta subunit (beta 36) on denaturing polyacrylamide gels. In addition, antisera generated against synthetic beta 2 peptides bind specifically to the beta 35 component of isolated G proteins and to a 35-kDa protein in myeloid cell membranes. Our results suggest that the two beta subunits could serve distinct functions, as they are derived from separate genes which have been highly conserved in evolution.  相似文献   

9.
Antibodies were prepared against a synthetic peptide corresponding to amino acid sequences 174-203 of the bovine gamma-aminobutyric acidA (GABAA) receptor alpha 1-subunit. The antibodies recognized this synthetic alpha 1-peptide, but failed to react with the homologous peptide sequence, 170-199, of the bovine beta 1-subunit. On Western blots, anti-alpha 1-subunit antibody recognized a 50-kilodalton (kDa) protein in affinity-purified receptor preparations from adult rat cortex and cerebellum. In receptor purified from neonatal cortex, the anti-alpha 1-antibody reacted with 50-kDa, 53-54-kDa, and 59-kDa proteins. After digestion with endoglycosidase F, these three protein bands retained differing electrophoretic mobilities. The 50-kDa and 59-kDa subunits of affinity-purified neonatal receptor, which were photoaffinity-labeled with [3H]flunitrazepam, were immunoprecipitated to different extents by alpha-subunit antibody. These data suggest the existence in GABAA receptor from neonatal cortex of three proteins (50 kDa, 53 kDa, and 59 kDa) which have immunological homology to alpha 1-subunit of bovine GABAA receptor. The presence of an alpha- and a beta-like subunit with similar mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis may account for the relatively high concentration of protein in the 53-54-kDa band which has been observed in receptor purified from neonatal cortex. The presence of multiple alpha-like subunits may be related to the presence of a relatively high concentration of type II GABA receptor in this tissue.  相似文献   

10.
Using high-resolution Mono Q column chromatography, we purified 6 distinct peaks of GTP-binding proteins from bovine brain membranes. Five of them consisted of 3 polypeptides with alpha beta gamma-subunits and served as the substrate of islet-activating protein (IAP), pertussis toxin. The other one was purified as alpha-subunit alone and was also ADP-ribosylated by IAP in the presence of beta gamma-subunits. When each alpha-subunit was characterized by immunoblot analysis using various antibodies with defined specificity, the two of them were identified as Gi-1 and Gi-2, and other 4 appeared to be Go or Go-like G proteins. The alpha-subunits of immunologically Go-like proteins were apparently distinguishable from one another on elution profiles from the Mono Q column. Thus, there was a heterogeneity of the alpha-subunit of Go in the brain membranes.  相似文献   

11.
Liver plasma membranes contain a morphologically distinct protein complex which serves as a substrate for the plasma membrane-associated transglutaminase. The complex, which appears as a two-dimensional sheet, is insoluble in sodium dodecyl sulfate and reducing agents and has been named SITS for sodium dodecyl sulfate-insoluble transglutaminase substrate (Tyrrell, D. J., Sale, W. S., and Slife, C. W. (1988) J. Biol. Chem. 263, 1946-1951). Polyclonal antibodies raised against SITS were used to probe for soluble constituents of the matrix. Immunoblots showed that proteins of 230, 35, and 32 kDa reacted with the anti-SITS antiserum when the soluble fraction from a liver homogenate was examined. The 230-kDa protein was identified as fibronectin after observing cross-reactivity of anti-SITS antiserum with authentic fibronectin and cross-reactivity of anti-fibronectin antiserum with the 230-kDa cytosolic protein and purified SITS. Preincubating anti-SITS antiserum with purified fibronectin decreased immunostaining of the 230-kDa cytosolic protein and authentic fibronectin. Immunoblots of the plasma membrane fraction using anti-SITS and anti-fibronectin antisera showed that both antisera reacted with proteins at the top of the stacking gel (SITS) and of 230 kDa. In addition, the anti-SITS antiserum reacted with proteins of 85, 35, and 32 kDa. Immunofluorescence microscopy revealed that the anti-SITS and anti-fibronectin antisera both react with isolated SITS and with the same filamentous structures associated with intact plasma membranes. These studies show that fibronectin is a component of the plasma membrane matrix, SITS. This finding is consistent with the proposed role of this matrix which is to mediate cell-cell adhesion between hepatocytes in the tissue.  相似文献   

12.
Recombinant GABAA (gamma-aminobutyrate-Type A) receptors that are sensitive to benzodiazepine receptor ligands can be generated by coexpression of alpha-, beta-, and gamma 2-subunit cDNAs (Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. (1989) Nature 338, 582-585; Pritchett, D. B., Lüddens, H., and Seeburg, P. H. (1989) Science 245, 1389-1392; Malherbe, P., Sigel, E., Baur, R., Perssohn, E., Richards, J. G., and Mohler, H. (1990) J. Neurosci. 10, 2330-2337). However, in brain tissue, only alpha- and beta-subunit proteins have so far been detected. To identify the size and distribution of the gamma 2-subunit protein in brain tissue, polyclonal antibodies were prepared against two synthetic peptides corresponding to amino acids 1-15 and 336-350 of the cDNA-derived rat gamma 2-subunit sequence. On Western blots, both anti-gamma 2-subunit antisera selectively labeled a 43-kDa protein. gamma 2-Subunit immunoreactivity was detected immunohistochemically in various brain regions, e.g. in the olfactory bulb, cerebral cortex, islands of Calleja, hippocampus, substantia nigra, and cerebellum. Immunoprecipitation with both antisera identified the gamma 2-subunit immunoreactivity in 40 and 50% of the native GABAA receptors purified from bovine and rat brains, respectively. Monoclonal antibody bd24 selectively recognizes the alpha 1-subunit, whereas bd17 recognizes both the beta 2- and beta 3-subunits (Ewert, M., Shivers, B. D., Lüddens, H., Mohler, H., and Seeburg, P. H. (1990) J. Cell Biol. 110, 2043-2048). Since either of these monoclonal antibodies (bd17 and bd24) precipitated approximately 90% of the GABAA receptors, the gamma 2-subunit is frequently associated with the alpha 1-subunit and the beta 2- and/or beta 3-subunit in vivo.  相似文献   

13.
H Stieve  G Lumme 《FEBS letters》1989,253(1-2):6-10
In contrast to antisera against native transducin a polyclonal antiserum raised against heat-denatured bovine transducin crossreacts with the G-protein from Sepia visual cells. This antiserum recognizes a 44 kDa (G alpha) and a 36 kDa (G beta) protein band from Sepia photosensory membrane preparation. Furthermore we purified the antibody-binding G-protein from Sepia by binding it to light-activated rhodopsin of Sepia and GTP-induced extraction, similar to the purification of bovine transducin. This G-protein is probably involved in the phototransduction process. The purified Sepia G-protein did bind to vertebrate photosensoric membrane upon illumination, but was not eluted by GTP-containing buffer solution. After extensive bleaching, the G-protein became soluble.  相似文献   

14.
A GTP-binding protein with an Mr of 24,000 was purified from a cholate extract of bovine brain membranes in addition to the previously reported alpha beta gamma-trimeric GTP-binding proteins (G proteins). Partial amino acid sequence analysis of the purified 24-kDa protein revealed that it was not identical to any of the low Mr GTP-binding proteins already reported, but similar to the rac-gene products serving as the substrate of an ADP-ribosyltransferase (C3) purified from the culture medium of Clostridium botulinum type C. However, the 24-kDa protein was not ADP-ribosylated by the botulinum C3 enzyme. The 24-kDa protein was purified as a nucleotide-free form and characterized by the following unique properties distinct from those of alpha beta gamma-trimeric G proteins. (1) Mg2+ was essentially required for nucleotide binding to the 24-kDa protein; there was a progressive increase in its binding affinity for nucleotides as the concentration of the divalent cation was increased. (2) Nucleotides previously bound to the 24-kDa protein were rapidly dissociated from the protein in Mg(2+)-free medium, in accord with the fact that the protein was indeed purified as a nucleotide-free form with Mg(2+)-free solutions. (3) The 24-kDa protein apparently exhibited much lower GTPase activity than do alpha beta gamma-trimeric G proteins because the product GDP was released from the 24-kDa protein in exchange for the substrate GTP only at a very low rate. Based on these findings, a possible role of the 24-kDa protein in cellular signalling is discussed in comparison with well characterized alpha beta gamma-trimeric G proteins.  相似文献   

15.
A high performance liquid chromatographic procedure has been used for the purification of rat Sertoli cell secretory protein S70 and S45-S35 heterodimeric protein to determine their role during spermatogenesis. These two proteins display binding affinity for each other and appear antigenically related. We have observed that: 1. S70 and S45-S35 heterodimeric protein coelute during purification, 2. polyclonal antiserum raised against protein S70 recognizes common antigenic determinants in polypeptides S45 and S35, the disulfide-linked components of the heterodimeric protein, and 3. a monoclonal antibody that recognizes polypeptide S35 but does not crossreact with either protein S70 or polypeptide S45, immunoprecipitates the S70/S45-S35 heterodimeric protein complex. In immunofluorescent experiments, antisera raised against protein S70 and polypeptide components of S45-S35 heterodimeric protein immunoreact with two major sperm intracellular structures: the acrosome and periaxonemal outer dense fibers of sperm tail. Immunoreactivity was not detected on the sperm plasma membrane surface of unfixed, living sperm. Outer dense fibers extracted from sperm tails by a combined treatment with cetylthrimethylammonium bromide and 2-mercaptoethanol, yielded a characteristic polypeptide pattern. In immunoblotting experiments sperm tail polypeptides were recognized by polyclonal antisera raised against Sertoli cell secretory proteins. We conclude that Sertoli cell secretory proteins S70 and S45-S35 heterodimeric protein are antigenically related to each other and to keratin-like polypeptides from sperm tail.  相似文献   

16.
A guanine nucleotide-binding regulatory protein (G protein), with subunits designated as alpha 40 beta gamma, was identified and partially resolved from two other purified G proteins, Go (alpha 39 beta gamma) and Gi (alpha 41 beta gamma), found in bovine brain. The alpha 40 G protein subunit served as a substrate for ADP-ribosylation catalyzed by Bordetella pertussis toxin, as did alpha 39 and alpha 41. alpha 40 was shown to be closely related to, but distinct from, alpha 41 by reaction with various peptide antisera. An antiserum generated against a peptide derived from the sequence of a Gi alpha clone isolated from a rat C6 glioma cDNA library (Itoh, H., Kozasa, T., Nagata, S., Nakamura, S., Katada, T., Ui, M., Iwai, S., Ohtsuka, E., Kawasaki, H., Suzuki, K., and Kaziro, Y. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 3776-3780) reacted with alpha 40 to the exclusion of all other alpha subunits tested. Another antiserum generated against a peptide derived from an analogous region of a different Gi alpha clone from a bovine brain cDNA library (Nukuda, T., Tanabe, T., Takahashi, H., Noda, M., Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H., and Numa, S. (1986) FEBS Lett. 197, 305-310) reacted exclusively with alpha 41. Evidence is given for the existence of another form of alpha 41 that did not react with either of these two peptide antisera. The antisera were used to survey various rat tissues for the expression of alpha 40 and alpha 41.  相似文献   

17.
DNA-dependent RNA polymerases have been solubilized from separated head and tail fractions from normal bovine spermatozoa and from spermatozoa carrying the 'decapitated sperm defect'. When enzyme extracts from separated heads and tails were chromatographed on DEAE-Sephadex, the head fraction was resolved into 2 distinguishable peaks eluting at about 0.11 and 0.15 M-(NH4)2SO4 while the tail fraction yielded 4 distinct peaks eluting at about 0.11, 0.15, 0.255 and 0.35 M-(NH4)2SO4. Results indentical to those observed for sperm tails were obtained with extracts prepared from highly purified mitochondria from bovine or murine heart or liver. Optimization of reaction parameters and inhibitor studies with alpha-amanitin and rifampicin revealed strong similarities between eucaryotic nuclear RNA polymerases 1 and 2 and the 2 RNA polymerases associated with sperm heads. Similar experiments comparing the RNA polymerases from somatic mitochondria and sperm tails suggested the sperm tail enzymes were mitochondrial in origin.  相似文献   

18.
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.  相似文献   

19.
Epididymis provides a safe environment in which stored-spermatozoa could survive for days before ejaculation. In vitro studies suggested that epididymal proteins seem to be implicated in sperm survival during coincubation with cultured epididymal cells. This study was basically designed to confirm if secretory proteins from bovine epididymal cell cultures provide sperm protection against rapid loss of sperm motility in vitro. Bovine spermatozoa were incubated in conditioned media (CM), which were prepared from cultured cauda epididymal cell (CEC). Motion parameters were recorded using a computer-assisted sperm analyzer. Sperm-free protein extracts from CM were fractionated by ultrafiltration through a 10-kDa cut off membrane. A significantly positive effect on sperm motility was observed when spermatozoa were incubated in CM (54 +/- 4%) and CM > 10 kDa (57 +/- 4%) compared to CM < 10-kDa fraction (30 +/- 3%) or fresh media (34 +/- 3%), after a 6-hr incubation period. This beneficial effect on sperm motility was abolished when the CM > 10-kDa fraction was heat-treated at 100 degrees C for 10 min. The CM > 10 kDa fraction provides factors that remained active even though spermatozoa were washed twice after a 2-hr preincubation period. To identify potential beneficial factors, bovine spermatozoa were incubated with radiolabeled proteins obtained using (35)S-methionine in culture medium. SDS-PAGE analysis of proteins extracted from CM-preincubated spermatozoa revealed the presence of a 42-kDa protein strongly associated to the sperm surface. This 42-kDa spot was trypsin-digested and identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as a protein homologue to a 35-kDa bovine estrogen-sulfotransferase. This protein can play a role in epididymal biology and sperm function. Taken together, these results suggest that specific epididymal proteins can be implicated in the sperm protection in vitro, and can be characterized in our cell culture system.  相似文献   

20.
Five different pertussis-toxin-sensitive guanine-nucleotide-binding proteins (G proteins) were purified from bovine brain. Immunochemical characterization of alpha subunits identified two G alpha o proteins (G alpha o-I and G alpha o-II), two 41-kDa G alpha i proteins (G alpha i-I and G alpha i-II) and the 40-kDa G alpha i2 protein. Site-directed antisera specific for G alpha o proteins did not differentiate between G alpha o-I and G alpha o-II. However, in situ peptide mapping using polyacrylamide gel electrophoresis revealed distinct cleavage products with different proteases for each of these proteins. Additionally comparison of Rf values demonstrated a slightly faster migration for G alpha o-II than for G alpha o-I, which is the only type of G alpha o protein present in cell membranes of the neuroblastoma/glioma cell line NG 108-15. The importance of these structural differences and possible functional implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号