首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preferential outgrowth of the bud cells forms the basis of branching morphogenesis. Here, we show that lacrimal gland development requires specific modification of heparan sulfates by Ndst genes at the tip of the lacrimal gland bud. Systemic and conditional knockout experiments demonstrate the tissue specific requirement of Ndst1 and Ndst2 in the lacrimal gland epithelial, but not mesenchymal, cells, and the functional importance of Ndst1 in Fgf10-Fgfr2b, but not of Fgf1-Fgfr2b, complex formation. Consistent with this, Fgf10-induced ectopic lacrimal gland budding in explant cultures is dependent upon Ndst gene dose, and epithelial deletion of Fgfr2 abolishes lacrimal gland budding, its specific modification of heparan sulfate and its phosphorylation of Shp2 (Ptpn11 - Mouse Genome Informatics). Finally, we show that genetic ablation of Ndst1, Fgfr2 or Shp2 disrupts ERK signaling in lacrimal gland budding. Given the evolutionarily conserved roles of these genes, the localized activation of the Ndst-Fgfr-Shp2 genetic cascade is probably a general regulatory mechanism of FGF signaling in branching morphogenesis.  相似文献   

2.
Fibroblast growth factor (Fgf) 10 is a critical regulator of bud formation during lung morphogenesis. fgf10 is expressed in distal lung mesenchyme at sites of prospective budding from the earliest developmental stages and signals through its epithelial receptor Fgfr2b. Experiments in intact lung organ cultures demonstrate that Fgf10 is a chemotactic factor for distal, but not for proximal, epithelium. This differential response suggests the involvement of an additional mechanism regulating Fgf10-Fgfr2b interactions, because Fgfr2b is uniformly expressed throughout the respiratory tract. Here we use an immunohistochemistry-based binding assay to show that O-sulfated heparan sulfates (HS) are critical for Fgf10 binding to the distal epithelium. We show that altering endogenous gradients of HS sulfation with sodium chlorate or over-O-sulfated synthetic heparin in lung organ cultures dramatically decreases Fgf10 binding. Moreover, we show that under these conditions epithelial binding is not improved by providing exogenous FGF10. Our data suggest that, not only ligand availability, but also the presence of specific patterns of HS modification in the distal lung epithelium are critical determinants of Fgf10 binding to the epithelium and signaling.  相似文献   

3.
Fibroblast growth factor (FGF) signaling mediates reciprocal mesenchymal-epithelial cell interactions in the developing mouse lung and limb. In the gastrointestinal (GI) tract, FGF10 is expressed in the cecal mesenchyme and signals to an epithelial splice form of FGF receptor (FGFR) 2 to regulate epithelial budding. Here, we identify FGF9 as a reciprocal epithelial-mesenchymal signal required for cecal morphogenesis. Fgf9 null (Fgf9(-/-)) mouse embryos have agenesis of the embryonic cecum, lacking both mesenchymal expansion and an epithelial bud. In the cecal region of Fgf9(-/-) embryos, mesenchymal expression of Fgf10 and Bmp4 is notably absent, whereas the expression of epithelial markers, such as sonic hedgehog, is not affected. Using epithelial and whole explant cultures, we show that FGF9 signals to mesenchymal FGFRs and that FGF10 signals to epithelial FGFRs. Taken together, these data show that an epithelial FGF9 signal is necessary for the expansion of cecal mesenchyme and the expression of mesenchymal genes that are required for epithelial budding. Thus, these data add to our understanding of FGF-mediated reciprocal epithelial-mesenchymal signaling.  相似文献   

4.
5.
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.  相似文献   

6.
Lineage formation in the lung mesenchyme is poorly understood. Using a transgenic mouse line expressing LacZ under the control of Fgf10 regulatory sequences, we show that the pool of Fgf10-positive cells in the distal lung mesenchyme contains progenitors of the parabronchial smooth muscle cells. Fgf10 gene expression is slightly repressed in this transgenic line. This allowed us to create a hypomorphic Fgf10 phenotype by expressing the LacZ transgene in a heterozygous Fgf10 background. Hypomorphic Fgf10 mutant lungs display a decrease in beta-galactosidase-positive cells around the bronchial epithelium associated with an accumulation of beta-galactosidase-expressing cells in the distal mesenchyme. This correlates with a marked reduction of alpha smooth muscle actin expression, thereby demonstrating that FGF10 is mostly required for the entry of mesenchymal cells into the parabronchial smooth muscle cell lineage. The failure of exogenous FGF10 to phosphorylate its known downstream targets ERK and AKT in lung mesenchymal cultures strongly suggests that FGF10 acts indirectly on the progenitor population via an epithelial intermediate. We provide support for a role of epithelial BMP4 in mediating the formation of parabronchial smooth muscle cells.  相似文献   

7.
Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fgfr2b. To address if lacrimal gland development and FGF signaling depends on 2-O-sulfation of uronic acids and 6-O-sulfation of glucosamine residues, we genetically ablated heparan sulfate 2-O and 6-O sulfotransferases (Hs2st, Hs6st1, and Hs6st2) in developing lacrimal gland. Using a panel of phage display antibodies, we confirmed that these mutations disrupted 2-O and/or 6-O but not N-sulfation of heparan sulfate. The Hs6st mutants exhibited significant lacrimal gland hypoplasia and a strong genetic interaction with Fgf10, demonstrating the importance of heparan sulfate 6-O sulfation in lacrimal gland FGF signaling. Altering Hs2st caused a much less severe phenotype, but the Hs2st;Hs6st double mutants completely abolished lacrimal gland development, suggesting that both 2-O and 6-O sulfation of heparan sulfate contribute to FGF signaling. Combined Hs2st;Hs6st deficiency synergistically disrupted the formation of Fgf10-Fgfr2b-heparan sulfate complex on the cell surface and prevented lacrimal gland induction by Fgf10 in explant cultures. Importantly, the Hs2st;Hs6st double mutants abrogated FGF downstream ERK signaling. Therefore, Fgf10-Fgfr2b signaling during lacrimal gland development is sensitive to the content or arrangement of O-sulfate groups in heparan sulfate. To our knowledge, this is the first study to show that simultaneous deletion of Hs2st and Hs6st exhibits profound FGF signaling defects in mammalian development.  相似文献   

8.
The role of WNT signaling and its interactions with other morphogenetic pathways were investigated during lung development. Previously, we showed that targeted disruption of Wnt5a results in over-branching of the epithelium and thickening of the interstitium in embryonic lungs. In this study, we generated and characterized transgenic mice with lung-specific over-expression of Wnt5a from the SpC promoter. Over-expression of Wnt5a interfered with normal epithelial-mesenchymal interactions resulting in reduced epithelial branching and dilated distal airways. During early lung development, over-expression of Wnt5a in the epithelium resulted in increased Fgf10 in the mesenchyme and decreased Shh in the epithelium. Both levels and distribution of SHH receptor, Ptc were reduced in SpC-Wnt5a transgenic lungs and were reciprocally correlated to changes of Fgf10 in the mesenchyme, suggesting that SHH signaling is decreased by over-expression of Wnt5a. Cultured mesenchyme-free epithelial explants from SpC-Wnt5a transgenic lungs responded abnormally to recombinant FGF10 supplied uniformly in the Matrigel with dilated branch tips that mimic the in vivo phenotype. In contrast, chemotaxis of transgenic epithelial explants towards a directional FGF10 source was inhibited. These suggest that over-expression of Wnt5a disrupts epithelial-response to FGF10. In conclusion, Wnt5a regulates SHH and FGF10 signaling during lung development.  相似文献   

9.
Heparan sulfate-FGF10 interactions during lung morphogenesis   总被引:3,自引:0,他引:3  
Signaling by fibroblast growth factor 10 (FGF10) through FGFR2b is essential for lung development. Heparan sulfates (HS) are major modulators of growth factor binding and signaling present on cell surfaces and extracellular matrices of all tissues. Although recent studies provide evidence that HS are required for FGF-directed tracheal morphogenesis in Drosophila, little is known about the HS role in FGF10-mediated bud formation in the vertebrate lung. Here, we mapped HS expression in the early lung and we investigated how HS interactions with FGF10-FGFR2b influence lung morphogenesis. Our data show that a specific set of HS low in O-sulfates is dynamically expressed in the lung mesenchyme at the sites of prospective budding near Fgf10-expressing areas. In turn, highly sulfated HS are present in basement membranes of branching epithelial tubules. We show that disrupting endogenous gradients of HS or altering HS sulfation in embryonic lung culture systems prevents FGF10 from inducing local responses and markedly alters lung pattern formation and gene expression. Experiments with selectively sulfated heparins indicate that O-sulfated groups in HS are critical for FGF10 signaling activation in the epithelium during lung bud formation, and that the effect of FGF10 in pattern is in part determined by regional distribution of O-sulfated HS. Moreover, we describe expression of a HS 6-O-sulfotransferase preferentially at the tips of branching tubules. Our data suggest that the ability of FGF10 to induce local budding is critically influenced by developmentally regulated regional patterns of HS sulfation.  相似文献   

10.
The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. In this paper, we have generated an allelic series to determine the impact of Fgf10 dosage on lung development. We report that 80% of the newborn Fgf10 hypomorphic mice die within 24 h of birth due to respiratory failure. These mutant mouse lungs display severe hypoplasia, dilation of the distal airways and large hemorrhagic areas. Epithelial differentiation and proliferation studies indicate a specific decrease in TTF1 and SP-B expressing cells correlating with reduced epithelial cell proliferation and associated with a decrease in activation of the canonical Wnt signaling in the epithelium. Analysis of vascular development shows a reduction in PECAM expression at E14.5, which is associated with a simplification of the vascular tree at E18.5. We also show a decrease in α-SMA expression in the respiratory airway suggesting defective smooth muscle cell formation. At the molecular level, these defects are associated with decrease in Vegfa and Pdgfa expression likely resulting from the decrease of the epithelial/mesenchymal ratio in the Fgf10 hypomorphic lungs. Thus, our results indicate that FGF10 plays a pivotal role in maintaining epithelial progenitor cell proliferation as well as coordinating alveolar smooth muscle cell formation and vascular development.  相似文献   

11.
We evaluated the role of the key pulmonary morphogenetic gene fibroblast growth factor-10 (Fgf10) in murine nitrofen-induced primary lung hypoplasia, which is evident before the time of diaphragm closure. In situ hybridization and competitive RT-PCR revealed a profound disturbance in the temporospatial pattern as well as a 10-fold decrease in mRNA expression level of Fgf10 but not of the inducible inhibitor murine Sprouty2 (mSpry2) after nitrofen treatment. Exogenous FGF-10 increased branching not only of control lungs [13% (right) and 27% (left); P < 0.01] but also of nitrofen-exposed lungs [23% (right) and 77% (left); P < 0.01]. Expression of mSpry2 increased 10-fold with FGF-10 in both nitrofen-treated and control lungs, indicating intact downstream FGF signaling mechanisms after nitrofen treatment. We conclude that nitrofen inhibits Fgf10 expression, which is essential for lung growth and branching. Exogenous FGF-10 not only stimulates FGF signaling, marked by increased mSpry2 expression, in both nitrofen-treated and control lungs but also substantially rescues nitrofen-induced lung hypoplasia in culture.  相似文献   

12.
Tracheal occlusion during lung development accelerates growth in response to increased intraluminal pressure. In order to investigate the role of internal pressure on murine early lung development, we cauterized the tip of the trachea, to occlude it, and thus to increase internal pressure. This method allowed us to evaluate the effect of tracheal occlusion on the first few branch generations and on gene expression. We observed that the elevation of internal pressure induced more than a doubling in branching, associated with increased proliferation, while branch elongation speed increased 3-fold. Analysis by RT-PCR showed that Fgf10, Vegf, Sprouty2 and Shh mRNA expressions were affected by the change of intraluminal pressure after 48h of culture, suggesting mechanotransduction via internal pressure of these key developmental genes. Tracheal occlusion did not increase the number of branches of Fgfr2b-/- mice lungs nor of wild type lungs cultured with Fgfr2b antisense RNA. Tracheal occlusion of Fgf10(LacZ/-) hypomorphic lungs led to the formation of fewer branches than in wild type. We conclude that internal pressure regulates the FGF10-FGFR2b-Sprouty2 pathway and thus the speed of the branching process. Therefore pressure levels, fixed both by epithelial secretion and boundary conditions, can control or modulate the branching process via FGF10-FGFR2b-Sprouty2.  相似文献   

13.
Fibroblast growth factor (FGF) signaling has been shown to regulate lung epithelial development but its influence on mesenchymal differentiation has been poorly investigated. To study the role of mesenchymal FGF signaling in the differentiation of the mesenchyme and its impact on epithelial morphogenesis, we took advantage of Fgfr2c(+/Delta) mice, which due to a splicing switch express Fgfr2b in mesenchymal tissues and manifest Apert syndrome-like phenotypes. Using a set of in vivo and in vitro studies, we show that an autocrine FGF10-FGFR2b signaling loop is established in the mutant lung mesenchyme, which has several consequences. It prevents the entry of the smooth muscle progenitors into the smooth muscle cell (SMC) lineage and results in reduced fibronectin and elastin deposition. Levels of Fgf10 expression are raised within the mutant mesenchyme itself. Epithelial branching as well as epithelial levels of FGF and canonical Wnt signaling is dramatically reduced. These defects result in arrested development of terminal airways and an "emphysema like" phenotype in postnatal lungs. Our work unravels part of the complex interactions that govern normal lung development and may be pertinent to understanding the basis of respiratory defects in Apert syndrome.  相似文献   

14.
15.
16.
Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.  相似文献   

17.
In extending our previous studies toward development of an engineered distal lung tissue construct (M. J. Mondrinos, S. Koutzaki, E. Jiwanmall, M. Li, J. P. Dechadarevian, P. I. Lelkes, and C. M. Finck. Tissue Eng 12: 717-728, 2006), we studied the effects of exogenous fibroblast growth factors FGF10, FGF7, and FGF2 on mixed populations of embryonic day 17.5 murine fetal pulmonary cells cultured in three-dimensional collagen gels. The morphogenic effects of the FGFs alone and in various combinations were assessed by whole mount immunohistochemistry and confocal microscopy. FGF10/7 significantly increased epithelial budding and proliferation; however, only FGF10 alone induced widespread budding. FGF7 alone induced dilation of epithelial structures but not widespread budding. FGF2 alone had a similar dilation, but not budding, effect in epithelial structures, and, in addition, significantly enhanced endothelial tubular morphogenesis and network formation, as well as mesenchymal proliferation. The combination of FGF10/7/2 induced robust budding of epithelial structures and the formation of uniform endothelial networks in parallel. These data suggest that appropriate combinations of exogenous FGFs chosen to target specific FGF receptor isoforms will allow for control of lung epithelial and mesenchymal cell behavior in the context of an engineered system. We propose that tissue-engineered fetal distal lung constructs could provide a potential source of tissue or cells for lung augmentation in pediatric pulmonary pathologies, such as pulmonary hypoplasia and bronchopulmonary dysplasia. In addition, engineered systems will provide alternative in vitro venues for the study of lung developmental biology and pathobiology.  相似文献   

18.
Pleuropulmonary Blastoma (PPB) is the primary neoplastic manifestation of a pediatric cancer predisposition syndrome that is associated with several diseases including cystic nephroma, Wilms tumor, neuroblastoma, rhabdomyosarcoma, medulloblastoma, and ovarian Sertoli-Leydig cell tumor. The primary pathology of PPB, epithelial cysts with stromal hyperplasia and risk for progression to a complex primitive sarcoma, is associated with familial heterozygosity and lesion-associated epithelial loss-of-heterozygosity of DICER1. It has been hypothesized that loss of heterozygosity of DICER1 in lung epithelium is a non-cell autonomous etiology of PPB and a critical pathway that regulates lung development; however, there are no known direct targets of epithelial microRNAs (miRNAs) in the lung. Fibroblast Growth Factor 9 (FGF9) is expressed in the mesothelium and epithelium during lung development and primarily functions to regulate lung mesenchyme; however, there are no known mechanisms that regulate FGF9 expression during lung development. Using mouse genetics and molecular phenotyping of human PPB tissue, we show that FGF9 is overexpressed in lung epithelium in the initial multicystic stage of Type I PPB and that in mice lacking epithelial Dicer1, or induced to overexpress epithelial Fgf9, increased Fgf9 expression results in pulmonary mesenchymal hyperplasia and a multicystic architecture that is histologically and molecularly indistinguishable from Type I PPB. We further show that miR-140 is expressed in lung epithelium, regulates epithelial Fgf9 expression, and regulates pseudoglandular stages of lung development. These studies identify an essential miRNA-FGF9 pathway for lung development and a non-cell autonomous signaling mechanism that contributes to the mesenchymal hyperplasia that is characteristic of Type I PPB.  相似文献   

19.
Lung development is a highly regulated process directed by mesenchymal-epithelial interactions, which coordinate the temporal and spatial expression of multiple regulatory factors required for proper lung formation. The Iroquois homeobox (Irx) genes have been implicated in the patterning and specification of several Drosophila and vertebrate organs, including the heart. Herein, we investigated whether the Irx genes play a role in lung morphogenesis. We found that Irx1-3 and Irx5 expression was confined to the branching lung epithelium, whereas Irx4 was not expressed in the developing lung. Antisense knockdown of all pulmonary Irx genes together dramatically decreased distal branching morphogenesis and increased distention of the proximal tubules in vitro, which was accompanied by a reduction in surfactant protein C-positive epithelial cells and an increase in beta-tubulin IV and Clara cell secretory protein positive epithelial structures. Transmission electron microscopy confirmed the proximal phenotype of the epithelial structures. Furthermore, antisense Irx knockdown resulted in loss of lung mesenchyme and abnormal smooth muscle cell formation. Expression of fibroblast growth factors (FGF) 1, 7, and 10, FGF receptor 2, bone morphogenetic protein 4, and Sonic hedgehog (Shh) were not altered in lung explants treated with antisense Irx oligonucleotides. All four Irx genes were expressed in Shh- and Gli(2)-deficient murine lungs. Collectively, these results suggest that Irx genes are involved in the regulation of proximo-distal morphogenesis of the developing lung but are likely not linked to the FGF, BMP, or Shh signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号