首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of required fields to obtain elongated plasma in the Damavand tokamak.  相似文献   

2.
An MHD diagnostic system for investigating the dynamics of disruption and the preceding phase of the discharge in the T-11M tokamak is described. This system makes it possible to study the structure of magnetic fluctuations in the plasma column. The diagnostic system includes a set of magnetic pick-up loops (Mirnov coils) arranged in several poloidal cross sections of the tokamak, a data acquisition system that provides synchronous recording of Mirnov coil signals, a synchronization system for triggering the data acquisition system during a disruption, and a system for processing and representation of the experimental data on magnetic fluctuations in the plasma column. Examples of how the MHD diagnostic system operates in the T-11M tokamak are presented.  相似文献   

3.
The paper describes a diagnostic system for studying MHD plasma perturbations in the Globus-M spherical tokamak (a major radius of 0.36 m, a minor radius of 0.24 m, and an aspect ratio of 1.5). The system includes a poloidal and a toroidal array consisting of 28 and 16 Mirnov probes, respectively, as well as a 32-channel proportional soft X-ray detector. Methods are described for calculating the poloidal and toroidal numbers of the dominant helical perturbations by using data from probe measurements. Results are presented of processing the experimental data from some tokamak discharges with a plasma current of 150–250 kA, an average electron density of up to 1020 m?3, and a toroidal magnetic field of 0.4 T. Specific features of MHD perturbations and their influence on the parameters of the plasma column in different stages of a discharge are briefly discussed.  相似文献   

4.
The characteristics of the major disruption of plasma discharges in the Globus-M spherical tokamak are analyzed. The process of current quench is accompanied by the loss of the vertical stability of the plasma column. The plasma boundary during the disruption is reconstructed using the algorithm of movable filaments. The plasma current decay is preceded by thermal quench, during which the profiles of the temperature and electron density were measured. The data on the time of disruption, the plasma current quench rate, and the toroidal current induced in the tokamak vessel are compared for hydrogen and deuterium plasmas. It is shown that the disruption characteristics depend weakly on the ion mass and the current induced in the vessel increases with the disruption time. The decay rate of the plasma toroidal magnetic flux during the disruption is determined using diamagnetic measurements. Such a decay is a source of the poloidal current induced in the vessel; it may also cause poloidal halo currents.  相似文献   

5.
A fast algorithm is elaborated for determining the position and shape of the plasma column from measurements performed with magnetic probes located outside the vacuum vessel of the GLOBUS-M tokamak. The algorithm is based on the modeling of the plasma current by movable current filaments and allows one to take into account the effect of eddy currents induced in the vacuum vessel. The algorithm was tested in a series of model discharges under conditions characteristic of the GLOBUS-M tokamak and serves now as a software component of its magnetic diagnostic system. By employing a conventional PC (Pentium 1 GHz, 200-MHz data bus), the calculation time of the plasma column parameters at one instant in time does not exceed 3 ms, which offers the possibility of controlling the plasma parameters during a discharge.  相似文献   

6.
The effect of plasma density variations along ion drift trajectories on the ion velocity distribution function at a given point on a tokamak magnetic surface is studied. The observed distortion of the distribution function can be interpreted as a poloidal (or toroidal) plasma rotation that is additional to the neoclassical rotation. Due to this additional rotation, the velocity of the toroidal plasma rotation is different on the low-and high-field sides of the same magnetic surface. In the case of large ion density gradients, the poloidal rotation velocity on the same magnetic surface can have different signs at different poloidal angles.  相似文献   

7.
The toroidal inhomogeneity of the poloidal magnetic field—the so-called error fields that arise due to imperfections in manufacturing and assembling of the electromagnetic system-was measured in the Globus-M spherical tokamak. A substantial inhomogeneity corresponding to the n = 1 mode, which gave rise to a locked mode and led to discharge disruption, was revealed. After compensation of this inhomogeneity with the help of special correction coils, the discharge duration increased and the global plasma parameters improved substantially. A technique for determining and compensating the n = 1 mode inhomogeneity is described, the measured dependences of the penetration threshold of the m = 2/n = 1 mode on the plasma parameters are given, and results of experiments in which record parameters for the Globus-M tokamak were achieved after correction of the poloidal magnetic field are presented.  相似文献   

8.
Expressions for the radial electric field in tokamaks are derived with allowance for an additional contribution of the longitudinal electron viscosity (or the associated Ware drift). It is shown that, in transient processes during which the toroidal electric field at the plasma edge increases, the additional electric field can become rather strong. An increase in the shear of the poloidal plasma rotation can trigger the L-H transition. That the experimentally observed transitions to an improved confinement mode can be ascribed to this effect is illustrated by simulating discharges in the current ramp-up experiments in the Tuman-3M tokamak.  相似文献   

9.
Drift-resistive ballooning turbulence is simulated numerically based on a quasi-three-dimensional computer code for solving nonlinear two-fluid MHD equations in the scrape-off layer plasma in a tokamak. It is shown that, when the toroidal geometry of the magnetic field is taken into account, additional (geodesic) flux terms associated with the first poloidal harmonic (∼sinθ) arise in the averaged equations for the momentum, density, and energy. Calculations show that the most important of these terms is the geodesic momentum flux (the Stringer-Windsor effect), which lowers the poloidal rotation velocity. It is also shown that accounting for the toroidal field geometry introduces experimentally observed, special low-frequency MHD harmonics—GA modes—in the Fourier spectra. GA modes are generated by the Reynolds turbulent force and also by the gradient of the poloidally nonuniform turbulent heat flux. Turbulent particle and heat fluxes are obtained as functions of the poloidal coordinate and are found to show that, in a tokamak, there is a “ballooning effect” associated with their maximum in the weak magnetic field region. The dependence of the density, temperature, and pressure on the poloidal coordinate is presented, as well as the dependence of turbulent fluxes on the toroidal magnetic field.  相似文献   

10.
The density of the noninductive current generated due to collisionless motion of α-particles in the tokamak magnetic field is calculated. The analysis is based on fully three-dimensional calculations of charged particle trajectories without simplifying assumptions typical for drift and neoclassical approaches. The current is calculated over the entire cross section of the plasma column, including the magnetic axis. It is shown that the current density is not a function of a magnetic surface and is strongly polarized over the poloidal angle. The current density distribution in the tokamak poloidal cross section is obtained, and the current density as a function of the safety factor, the tokamak aspect ratio, and the ratio of the particle Larmor radius on the axis to the tokamak minor radius is determined. It is shown that, when the source of α-particles is spatially nonuniform, the current density in the center of the tokamak is nonzero due to asymmetry of the phase-space boundary between trapped and passing particles. The current density scaling in the tokamak center differs from the known approximations for the bootstrap current and is sensitive to the spatial distribution of α-particles.  相似文献   

11.
Vitamin A is stored as retinyl esters (REs) in lipid droplets of hepatic stellate cells (HSCs). To date, two different pathways are known to facilitate the breakdown of REs: (i) Hydrolysis of REs by neutral lipases, and (ii) whole lipid droplet degradation in autolysosomes by acid hydrolysis.In this study, we evaluated the contribution of neutral and acid RE hydrolases to the breakdown of REs in human HSCs. (R)-Bromoenol lactone (R-BEL), inhibitor of adipose triglyceride lipase (ATGL) and patatin-like phospholipase domain-containing 3 (PNPLA3), the hormone-sensitive lipase (HSL) inhibitor 76-0079, as well as the serine-hydrolase inhibitor Orlistat reduced neutral RE hydrolase activity of LX-2 cell-lysates between 20 and 50%. Interestingly, in pulse-chase experiments, R-BEL, 76-0079, as well as Orlistat exerted little to no effect on cellular RE breakdown of LX-2 cells as well as primary human HSCs. In contrast, Lalistat2, a specific lysosomal acid lipase (LAL) inhibitor, virtually blunted acid in vitro RE hydrolase activity of LX-2 cells. Accordingly, HSCs isolated from LAL-deficient mice showed RE accumulation and were virtually devoid of acidic RE hydrolase activity. In pulse-chase experiments however, LAL-deficient HSCs, similar to LX-2 cells and primary human HSCs, were not defective in degrading REs.In summary, results demonstrate that ATGL, PNPLA3, and HSL contribute to neutral RE hydrolysis of human HSCs. LAL is the major acid RE hydrolase in HSCs. Yet, LAL is not limiting for RE degradation under serum-starvation. Together, results suggest that RE breakdown of HSCs is facilitated by (a) so far unknown, non-Orlistat inhibitable RE-hydrolase(s).  相似文献   

12.
The effect of variations in the key parameter of short-wavelength turbulence—the ion-acoustic Larmor radius ρ s , which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers—was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3–5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.  相似文献   

13.
Experimental data on the processes in edge plasma that accompany the transition to an improved confinement regime during lower hybrid heating in the FT-2 tokamak are presented. The poloidal and radial distributions of the plasma parameters and drift particle fluxes were measured with the use of mobile mulitielectrode Langmuir probes and were found to be substantially nonuniform in the poloidal direction. The evolution of the plasma parameters in the course of heating and during an L-H transition is investigated. It is shown that, in FT-2 experiments, the drift of plasma particles in a slowly varying (quasi-steady) electric field and the fluctuation-induced particle fluxes make comparable contributions to the radial particle transport, whereas the contribution of fluctuations to poloidal plasma fluxes is negligibly small. The effective coefficient of radial diffusion is determined. The measurement results show that the L-H transition is accompanied by a substantial decrease in this coefficient.  相似文献   

14.
A possible mechanism for the generation and motion of so-called blobs—peculiar perturbations that are observed in a tokamak edge plasma—is proposed. It is suggested that blobs are self-contracting plasma filaments generated either by the thermal-radiative instability of a plasma with impurities or by the nonradiative resonant charge-exchange instability resulting from the presence of neutral hydrogen atoms near the tokamak wall. Instability occurs in a narrow temperature range in which pressure is a decreasing function of density. Under these conditions, the most typical perturbations are the local ones that originate spontaneously in the form of separate growing hills and wells in the density. The temperature at the centers of the hills is lower than that in the surrounding plasma, but they are denser and, consequently, brighter than the background. The (denser) hills should move (“sink”) toward the separatrix, while the (less dense) wells should “rise” in the opposite direction, as is observed in experiments. It may even be said that they behave in accordance with a peculiar Archimedes' principle.  相似文献   

15.
The trapped particle theory of turbulent transport successfully explains key features of tokamak transport: the canonical L-mode, supershort plasma profiles, and the transport suppression by negative magnetic shear and poloidal rotation. Here, this theory is applied to reversed-field pinch (RFP) profiles, which can be justified if the magnetic fluctuations are suppressed, and to stellarators. A canonical density profile for RFPs is suggested, and it is found that no analogue of the transport suppression by negative shear in tokamaks is possible in RFPs. In quasi-helical stellarators, on the other hand, it appears possible to create an analogue of the tokamak reversed shear mode in the entire plasma volume.  相似文献   

16.
The paper presents a review of the main results on the heating of plasma ions and behavior of fast ions in experiments on neutral beam injection (NBI) carried out in 2003–2010 on the Globus-M spherical tokamak. It is noticed that, along with significant success achieved in NBI plasma heating, there is experimental evidence indicating significant losses of the power injected into the plasma. Most probably, the power is lost due to so-called first-orbit losses, i.e., losses of fast ions that are produced in plasma after ionization of beam atoms and occur in unconfined trajectories. Until recently, the absence of appropriate diagnostic equipment did not allow one to verify this hypothesis. The use of the ACORD-M charge-exchange analyzer directed tangentially to the plasma column made it possible to measure the spectra of fast ions slowed down in plasma and confirm the assumption on the presence of substantial orbit losses of fast particles (~25–50% of the beam power). In addition to the review of the experimental results, the paper presents analysis of orbit losses on the basis of 3D simulations of fast-ion trajectories in plasma. The results of experiments on studying the influence of the magnitude of the tokamak magnetic field on the confinement of fast ions are also presented. Along with computer simulations, these experiments made it possible to formulate recommendations on the reduction of orbit losses in the Globus-M tokamak.  相似文献   

17.
Analytic estimates and numerical computations are carried out to test the concept of a laboratory experiment on the demonstration of a runaway electron (RE) avalanche and RE-induced air breakdown under high overvoltages. It is shown that the development of an RE avalanche is impossible under the conditions of the given laboratory experiment. The experimentally observed distinct tail of the picosecond RE pulse, which was interpreted as the RE avalanche induced by the primary RE peak, is very weakly pronounced in the numerical experiment. Only the initial stage of the RE avalanche could be observed in the laboratory experiment; however, according to the numerical results, the fraction of REs in it is too small (as compared to the number of electrons in the primary peak) for the secondary REs to appreciably affect the breakdown process.  相似文献   

18.
A new method for measuring the plasma density in magnetic confinement systems—pulsed time-of-flight refractometry—is developed and tested experimentally in the T-11M tokamak. The method is based on the measurements of the time delay of short (with a duration of several nanoseconds) microwave pulses propagating through the plasma. When the probing frequency is much higher than the plasma frequency, the measured delay in the propagation time is proportional to the line-averaged electron density regardless of the density profile. A key problem in such measurements is the short time delay of the pulse in the plasma (~1 ns or less for small devices) and, consequently, low accuracy of the measurements of the average density. Various methods for improving the accuracy of such measurements are proposed and implemented in the T-11M experiments. The measurements of the line-averaged density in the T-11M tokamak in the low-density plasma regime are performed. The results obtained agree satisfactorily with interferometric data. The measurement errors are analyzed, and the possibility of using this technique to measure the electron density profile and the position of the plasma column is discussed.  相似文献   

19.
Synthesis and simulation of a hierarchical (two-level) magnetic system for controlling a tokamakreactor plasma throughout the entire divertor discharge stage, including the plasma current ramp-up phase, are carried out. The plasma vertical velocity is stabilized about zero by using a proportional controller in a scalar control loop. The gain of the controller—the coefficient that ensures the required stability margins—is found by using a second-order linear model constructed by solving the identification problem on the basis of numerical experiments carried out with the DINA plasmophysical computer code. The internal cascade (the lower level of the system) for tracking the scenario currents in the poloidal magnetic field coils is synthesized by using the complete dynamic channel decoupling method. The external cascade (the upper level of the system) for tracking the plasma current and shape is synthesized by using the method of pseudoseparation of the control channels and the multidimensional diagonal proportional-integral controller, with proportional, integrating, and double integrating units connected in parallel in each channel. In the hierarchical control system, the lower level (the internal cascade) is subordinated to the upper level (the external cascade). The external cascade acts on the internal one by the signals that set the required currents in the coils of the central solenoid and of the poloidal magnetic field in order to ensure the required plasma current and shape in accordance with the output signals from the plant, which are transmitted through the vector feedback channel. The lower level is aimed exclusively at tracking the reference inputs by tracking the currents in the control coils. An operating mode of the system under the conditions of current saturation in the control coils is proposed and implemented. Results are presented from numerical simulations of the two-level (cascade) control system for reference scenario no. 2 of the ITER database (www.iter.org) with the DINA nonlinear code.  相似文献   

20.
Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10 × 10(-3) to 1.86 CFU/cm(2)). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD(90) (≥1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm(2) on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号