首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tacrolimus (FK506) is a potent immunosuppressant widely used for organ transplantation patients while diltiazem (DTZ), a calcium-channel inhibitor, is often used in renal transplantation patients to prevent post-transplant hypertension. However, DTZ has a significant pharmacokinetic interaction with FK506. In this study, a rapid and sensitive ammonium-adduct based liquid chromatography-tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the simultaneous determination of FK506 and DTZ in human whole blood using ascomycin as the internal standard (IS). After extraction of the whole blood samples by ethyl acetate, FK506, DTZ and the IS were subjected to LC/MS/MS analysis using electro-spray positive-ion mode ionization (ESI(+)). Chromatographic separation was performed on a Hypersil BDS C18 column (50 mm x 2.1 mm, i.d., 3 microm). The MS/MS detection was conducted by monitoring the fragmentation of 821.7-->768.9 (m/z) for FK506, 415.5-->310.3 (m/z) for DTZ and 809.8-->757.0 (m/z) for IS. The method had a chromatographic running time of approximately 2 min and linear calibration curves over the concentrations of 0.5-200 ng/mL for FK506 and 2-250 ng/mL for DTZ. The recoveries of liquid-liquid extraction method were 58.3-62.6% for FK506 and 50.4-58.8% for DTZ. The lower limit of quantification (LLOQ) of the analytical method was 0.5 ng/mL for FK506 and 2 ng/mL for DTZ. The intra- and inter-day precision was less than 15% for all quality control samples at concentrations of 2, 10, and 50 ng/mL for FK506 and 5, 25, and 100 ng/mL for DTZ. The validated LC/MS/MS method has been successfully used to analyze the concentrations of FK506 and DTZ in whole blood samples from pharmacokinetic studies in renal transplanted patients.  相似文献   

2.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

3.
A rapid, specific and sensitive liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was developed for simultaneous quantitation of six Aconitum alkaloids, i.e. aconitine (AC), mesaconitine (MA), hypaconitine (HA), benzoylaconine (BAC), benzoylmesaconine (BMA) and benzoylhypaconine (BHA) in human plasma collected from 18 healthy volunteers after intravenous drop infusion of "SHEN-FU" injectable powder in three different dosages. Lappaconitine was selected as the internal standard (IS). LC/MS/MS system coupled with an electrospray ionization (ESI) source was performed in multiple-reaction monitoring (MRM) mode. The transitions of the Aconitum alkaloids executed as following: m/z 646.3-->586.0 for AC; m/z 632.4-->573.1 for MA; m/z 616.2-->556.1 for HA; m/z 604.2-->104.8 for BAC; m/z 590.1-->104.8 for BMA; m/z 574.1-->104.8 for BHA; m/z 585.2-->161.8 for IS. Sample preparation was performed with solid-phase extraction (SPE) on a 1 mL HLB cartridge prior to analysis. The separation was applied on a Waters C(18) column (1.7 microm, 2.1 mm x 100 mm) and a gradient elution of methanol and 0.1% formic acid-water was used as mobile phase. The retention time was less than 4.5 min. The concentrations ranged from 0.1 to 1000 ng/mL for all six Aconitum alkaloids and showed a good linearity with the correlation coefficient (r(2)) >0.995. The validated method was employed to simultaneous quantitation and successfully used for the first time for the pharmacokinetic evaluation of the six Aconitum alkaloids after intravenous drop administration of "SHEN-FU" injectable powder in phase I clinical trial.  相似文献   

4.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

5.
A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of triazolam and its metabolites, alpha-hydroxytriazolam (alpha-OHTRZ) and 4-hydroxytriazolam (4-OHTRZ), was developed and validated. Triazolam-D4 was used as the internal standard (IS). This analysis was carried out on a Thermo((R)) C(18) column and the mobile phase was composed of acetonitrile:H(2)O:formic acid (35:65:0.2, v/v/v). Detection was performed on a triple-quadrupole tandem mass spectrometer using positive ion mode electrospray ionization (ESI) and quantification was performed by multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 343.1-->308.3, 359.0-->308.3, 359.0-->111.2 and 347.0-->312.0 for triazolam, alpha-OHTRZ, 4-OHTRZ and triazolam-D4, respectively. LLOQ of the analytical method was 0.05ng/mL for triazolam and 0.1ng/mL for alpha-OHTRZ and 4-OHTRZ. The within- and between-run precisions were less than 15.26% and accuracy was -8.08% to 13.33%. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of triazolam in healthy Chinese volunteers.  相似文献   

6.
Glabridin is a major flavonoid included specifically in licorice (Glycyrrhiza glabra L.), and has various physiological activities including antioxidant and anti-inflammatory effects. We have developed and validated an analytical method for determination of glabridin in human plasma by solid-phase extraction (SPE) and LC-MS/MS. Glabridin was extracted from plasma by SPE using a C8 cartridge and analyzed by LC-MS/MS using mefenamic acid as an internal standard (IS). The analyte were separated by a C18 column on LC, and monitored with a fragment ion of m/z 201 formed from a molecular ion of m/z 323 for glabridin and that of m/z 196 from m/z 240 for IS during negative ion mode with tandem MS detection. The lower limit of quantitation (LLOQ) of glabridin was 0.1 ng/mL in plasma, corresponding to 1.25 pg injected on-column. The calibration curves exhibited excellent linearity (r>0.997) between 0.1 and 50 ng/mL. Precision and accuracy were <17 and <+/-7% at LLOQ, and <11 and <+/-5% at other concentrations. Glabridin was recovered >90%, and was stable when kept at 10 degrees C for 72 h, at -20 degrees C until 12 weeks, and after three freeze-thaw cycles. This is the first report on determination of glabridin in body fluids by the selective, sensitive, and reproducible method.  相似文献   

7.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and fully validated to determine HS270, a new histone deacetylase (HDAC) inhibitor, in rat plasma using SAHA as the internal standard (IS). After a single step liquid-liquid extraction with acetoacetate, analytes were subjected to LC-MS/MS analysis using positive electro-spray ionization (ESI(+)) under selected reaction monitoring mode (SRM). The chromatographic separation was achieved on a Hypurity C(18) column (50 mm × 2.1 mm, i.d., 5 μm). The MS/MS detection was conducted by monitoring the fragmentation of m/z 392.3→100.1 for HS270, m/z 265.1→232.1 for IS. The method had a chromatographic running time of 2.5 min and linear calibration curves over the concentrations of 0.5-1000 ng/mL. The recovery of the method was 70.8-82.5% and the lower limit of quanti?cation (LLOQ) was 0.5 ng/mL. The intra- and inter-batch precisions were less than 15% for all quality control samples at concentrations of 1.0, 100.0, and 750.0 ng/mL. The validated LC-MS/MS method has successfully applied to a HS270 pharmacokinetic study after oral doses of 25, 50, 100, 200 mg/kg, and i.v. dose of 5 mg/kg to rats.  相似文献   

8.
A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was established for the determination of 5-aminoimidazole-4-carboxamide (AICA) in human plasma. The method included a solvent extraction of AICA as an ion pair with 1-pentanesulfonate ion and a separation on a Hypersil ODS2 column with the mobile phase of methanol-water (68:32, v/v). Determination was performed using an electrospray ionization source in positive ion mode (ESI(+)). Multiple reaction monitoring (MRM) was utilized for the detection monitoring m/z at 127-->110 for AICA, and 172-->128 for IS. The calibration curve was linear within a range from 20 to 2000 ng/mL and the limit of quantity for AICA in plasma was 20 ng/mL. RSD of intra-assay and inter-assay were no more than 5.90% and 5.65%.  相似文献   

9.
Separation of metformin and glibenclamide was achieved within a single chromatographic run on a Zorbax CN column, under isocratic conditions, using acetonitrile and aqueous component (0.01 moles/L ammonium acetate adjusted at pH 3.5 with acetic acid) in volumetric ratio 1/1. Plasma sample preparation is based on protein precipitation by means of organic solvent addition. 1,3,5-Triazine-2,4,6-triamine (IS1) was used as internal standard for metformin, while gliquidone (IS2) played the same role for glibenclamide. Detection was performed with an ion trap mass analyzer, using atmospheric pressure chemical ionization (APCI). A single MS stage was used for detection of metformin and IS1, by extracting ion chromatograms corresponding to molecular ions. MS/MS detection in the SRM mode was used for glibenclamide (m/z transition from 494 to 369 Da) and IS2 (m/z transition from 528 to 403 Da). The method produces linear responses up to 2000 ng/mL for metformin and 400 ng/mL for glibenclamide, respectively. Low limits of quantification were found in the 40 ng/mL range for metformin and at the 4 ng/mL level for glibenclamide. Precision was characterized by relative standard deviations (RSD%) below 9%. The analytical method was successfully applied to a single dose, open-label, randomized, two-period, two-sequence, crossover bioequivalence study of two commercially available anti-diabetic combinations containing 400 mg metformin and 2.5 mg of glibenclamide per coated tablet.  相似文献   

10.
A liquid chromatography-tandem mass spectrometry assay to quantify total paclitaxel in mouse plasma and tissue homogenates containing paclitaxel, Taxol, or liposome-entrapped paclitaxel-easy to use (LEP-ETU) was developed and validated. Docetaxel was used as the internal standard (IS). Liquid-liquid extraction with tert-butyl methyl ether was used for plasma sample preparation, and a one-step protein precipitation with acetonitrile containing 0.1% acetic acid was developed for tissue homogenates. Paclitaxel and IS are separated on a 50 x 2.1-mm C18 column and quantified using a triple-quadrupole mass spectrometer operating in positive ion electrospray multiple reaction monitoring mode, with a total run time of 3.5 min. The peak area of the m/z 854.4--> 286.2 transition of paclitaxel is measured versus that of the m/z 808.5--> 527.5 transition of IS to generate the standard curve. In plasma, the linear range is 0.2-500 ng/mL and could be extended by dilution to 100,000 ng/mL with acceptable precision and accuracy (< or = 15%). The lower limit of quantification is 0.5 ng/mL in tissue homogenates (10 ng/g tissue), and the standard curve is linear up to 1000 ng/mL, with precision and accuracy < or = 15%. This assay was used to support a pharmacokinetics and tissue distribution study of LEP-ETU in mice.  相似文献   

11.
A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers.  相似文献   

12.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

13.
A liquid chromatography-mass spectrometry method (LC-MS/MS) for the quantitative determination of rifaximin in human plasma was developed and validated. In the developed procedure, metoprolol was added to human plasma as an internal standard (IS) and acetonitrile was used to precipitate the plasma proteins before LC-MS/MS analysis. Chromatographic separation was obtained on a RESTEK Pinnacle C18 column (50 mm x 2.1mm, 5 microm) with a mobile phase consisted of ammonium acetate solution (15 mM, pH 4.32) as buffer A and methanol as mobile phase B. Quantification was performed in positive mode using multiple reaction monitoring (MRM) of the transitions m/z 786.1-->754.1 for rifaximin and m/z 268.3-->116.1 for the IS. The assay has been validated over the concentration range of 0.5-10 ng/ml (r=0.9992) based on the analysis of 0.2 ml of plasma. The assay accuracy was between 98.2% and 109%. The within-day and between-day precision was better than 3.9% and 8.9% at three concentration levels. The freeze-thaw stability was also investigated and it was found that both rifaximin and the IS were quite stable. This method provides a rapid, sensitive, specific and robust tool for the quantitative determination of rifaximin in human plasma, which is especially useful for the pharmacokinetic study of rifaximin.  相似文献   

14.
An ammonium-adduct based liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of three isomeric metabolites of tacrolimus (FK506), 13-O-demethylated (M1), 31-O-demethylated (M2) and 15-O-demethylated (M3) tacrolimus in human whole blood and plasma. These metabolites and the internal standards were extracted from biological matrix by methylbutyl ether (MTBE). Separation was achieved on a Genesis C(18) column with a gradient mobile phase elution. Ammonium-adduct ions formed by a Turbo Ionspray in positive ion mode were used to detect each analyte and internal standard. The MS/MS detection was by monitoring the fragmentation of 807.5-->772.4 (m/z) for M1, 807.5-->754.5 (m/z) for both M2 and M3, 795.5-->760.5 (m/z) for IS1 (FR298701) and 961.5-->908.5 (m/z) for IS2 (FR290198) on a triple quadrupole mass spectrometer (Sciex API 3000). The retention times were approximately 4.1 min for M1, 6.8 min for M2, 6.0 min for M3, and 3.9 min for IS1 and 6.4 min for IS2, respectively. The validated dynamic range was 0.2-20 ng/ml for all three metabolites based on a sample volume of 0.25-ml. The linearity of calibration curves for M1, M2, and M3 in both matrices had a correlation coefficient of >/=0.9984. In whole blood, validation data showed intra-batch (n=6) CVs of 相似文献   

15.
The alkaloids from Piper longum L. showed protective effects on Parkinson's disease models in our previous study and piperine and piperlonguminine were the two main constituents in the alkaloids. The present study aimed at developing a rapid, sensitive, and accurate UFLC-ESI-MS/MS method and validating it for the simultaneous determination of piperine and piperlonguminine in rat plasma using terfenadine as the internal standard. The analytes and internal standard (IS) were extracted from rat plasma using a simple protein precipitation by adding methanol/acetonitrile (1:1, v/v). A Phenomenex Gemini 3 u C18 column (20 mm × 2.00 mm, 3 μm) was used to separate the analytes and IS using a gradient mode system with a mobile phase consisting of water with 0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase B) at a flow rate of 0.4 mL/min and an operating column temperature of 25°C. The total analytical run time was 4 min. The detection was performed using the positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode with transitions at m/z 286.1-201.1 for piperine, m/z 274.0-201.1 for piperlonguminine, and m/z 472.4-436.4 for the IS. The calibration curves were both linear (r>0.995) over a concentration range of 1.0 to 1000 ng/mL; the lower limit of quantification (LLOQ) was 1.0 ng/mL for both piperine and piperlonguminine. The intra-day and inter-day precisions (RSD %) were <12.1%, accuracies ranged from 86.6 to 120%, and recoveries ranged from 90.4 to 108%. The analytes were proven stable in the short-term, long-term, and after three freeze-thaw cycles. The method was successfully applied to pharmacokinetic studies of piperine and piperlonguminine in rats after oral administration of alkaloids from P. longum L.  相似文献   

16.
A precise, sensitive and high throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of trazodone (TRZ) and its primary metabolite, m-chlorophenylpiperazine (mCPP), in human plasma was developed and validated. The analytes and the internal standard-nefazodone were extracted from 500 microL aliquots of human plasma via liquid-liquid extraction in n-hexane. Chromatographic separation was achieved in a run time of 2.5 min on a Betabasic cyano column (100 mm x 2.1 mm, 5 microm) under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for TRZ, mCPP and IS were m/z 372.2-->176.2, 197.2-->118.1 and 470.5-->274.6 respectively. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect, stability study and dilution integrity. A linear dynamic range of 10.0-3000.0 ng/mL for TRZ and 0.2-60.0 ng/mL for mCPP was evaluated with mean correlation coefficient (r) of 0.9986 and 0.9990 respectively. The intra-batch and inter-batch precision (%CV) across five validation runs (LLOQ, lower limit of quantitation; LQC, low quality control; MQC, middle quality control; HQC, high quality control and ULOQ, upper limit of quantitation) was < or =8.4% for both the analytes. The method was successfully applied to a bioequivalence study of 100mg trazodone tablet formulation in 36 healthy Indian male subjects under fasting and fed conditions.  相似文献   

17.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

18.
A new LC-ESI-MS/MS assay method has been developed and validated for the quantification of swertiamarin, a representative bioactive substance of Swertia plants, in rat plasma using gentiopicroside, an analog of swertiamarin on chemical structure and chromatographic action, as the internal standard (IS). The swertiamarin and IS were extracted from rat plasma using solid-phase extraction (SPE) as the sample clean-up procedure, and they were chromatographed on a narrow internal diameter column (Agilent ZORBAX ECLIPSE XDB-C(18) 100 mm × 2.1 mm, 1.8 μm) with the mobile phase consisting of methanol and water containing 0.1% acetic acid (25:75, v/v) at a flow rate of 0.2 mL/min. The detection was performed on an Agilent G6410B tandem mass spectrometer by negative ion electrospray ionisation in multiple-reaction monitoring mode while monitoring the transitions of m/z 433 [M+CH(3)COO](-)→179 and m/z 415 [M+CH(3)COO](-)→179 for swertiamarin and IS, respectively. The lower limit of quantification (LLOQ) was 5 ng/mL within a linear range of 5-1000 ng/mL (n=7, r(2)≥0.994), and the limit of detection (LOD) was demonstrated as 1.25 ng/mL (S/N≥3). The method also afforded satisfactory results in terms of sensitivity, specificity, precision (intra- and inter-day), accuracy, recovery, freeze/thaw, long-time stability and dilution integrity. This method was successfully applied to determination of the pharmacokinetic properties of swertiamarin in rats after oral administration at a dose of 20 mg/kg. The following pharmacokinetic parameters were obtained (mean): maximum plasma concentration, 1920.1 ng/mL; time to reach maximum plasma concentration, 0.945 h; elimination half-time, 1.10h; apparent total clearance, 5.638 L/h/kg; and apparent volume of distribution, 9.637 L/kg.  相似文献   

19.
A simple, sensitive and specific HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the simultaneous quantification of tiloronoxim and its major active metabolite, tilorone, in human urine. The analytes, together with metoprolol, which was employed as an internal standard (IS), were extracted with a mixture solvent of chloroform/ethyl ether (1/2, v/v). The chromatographic separation was performed on a narrow-bore reversed phase HPLC column with a gradient mobile phase of methanol/water containing 15 mM ammonium bicarbonate (pH 10.5). The API 3,000 mass spectrometer was equipped with a TurboIonSpray interface and was operated on positive-ion, multiple reaction-monitoring (MRM) mode. The mass transitions monitored were m/z 426.3-->100.0, m/z 411.3-->100.0 and m/z 268.3-->116.1 for tiloronoxim, tilorone and the IS, respectively. The assay exhibited a linear dynamic range of 1-100 ng/ml for both tiloronoxim and tilorone based on the analysis of 0.2 ml aliquots of urine. The lower limit of quantification was 1 ng/ml for both compounds. Acceptable precision and accuracies were obtained for concentrations over the standard curve ranges. Run time of 8 min for each injection made it possible to analyze a high throughput of urine samples. The assay has been successfully used to analyze human urine samples from healthy volunteers.  相似文献   

20.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号