首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Giambattista Brocchi’s (1814) monograph (see Dominici, Evo Edu Outreach, this issue, 2010) on the Tertiary fossils of the Subappenines in Italy—and their relation to the living molluscan fauna—contains a theoretical, transmutational perspective (“Brocchian transmutation”). Unlike Lamarck (1809), Brocchi saw species as discrete and fundamentally stable entities. Explicitly analogizing the births and deaths of species with those of individual organisms (“Brocchi’s analogy”), Brocchi proposed that species have inherent longevities, eventually dying of old age unless driven to extinction by external forces. As for individuals, births and deaths of species are understood to have natural causes; sequences of births and deaths of species produce genealogical lineages of descent, and faunas become increasingly modernized through time. Brocchi calculated that over 50% of his fossil species are still alive in the modern fauna. Brocchi’s work was reviewed by Horner (1816) in Edinburgh. Brocchi’s influence as a transmutational thinker is clear in Jameson’s (1827) “geological illustrations” in his fifth edition of his translation of Cuvier’s Theory of the Earth (read by his student Charles Darwin) and in the anonymous essays of 1826 and 1827 published in the Edinburgh New Philosophical Journal—which also carried a notice of Brocchi’s death in 1827. The notion that new species replace older, extinct ones—in what today would be called an explicitly phylogenetic context—permeates these essays. Herschel’s (1830) discussion of temporal replacement of species and the modernization of faunas closely mirrors these prior discussions. His book, dedicated to the search for natural causes of natural phenomena, was read by Charles Darwin while a student at Cambridge. Darwin’s work on HMS Beagle was in large measure an exploration of replacement patterns of “allied forms” of endemic species in time and in space. His earliest discussions of transmutation, in his essay February 1835, as well as the Red Notebook and the early pages of Notebook B (the latter two written in 1837 back in England), contain Brocchi’s analogy, including the idea of inherent species longevities. Darwin’s first theory of the origin of species was explicitly saltational, invoking geographic isolation as the main cause of the abrupt appearance of new species. We conclude that Darwin was testing the predicted patterns of both Brocchian and Lamarckian transmutation as early as 1832 at the outset of his work on the Beagle.  相似文献   

2.
The Italian geologist Giambattista Brocchi (1771–1826) is presented as a key figure in the historical period preceding young Charles Darwin’s first work on transmutational theory while on the Beagle. The brief biographical account focuses on Brocchi’s writings related to his analogy that species have births and deaths like individuals, and culminates in his most important work, Subapennine Fossil Conchology of 1814. Brocchi’s analogy as an original and fertile way to approach the fossil record was to influence Darwin’s first evolutionary thinking. Relevant passages of the book are presented for the first time in an English translation.  相似文献   

3.
4.
It is clear from his published works that Charles Darwin considered domestication to be very useful in exploring and explaining mechanisms of evolutionary change. Not only did domestication occupy the introductory chapter of On the Origin of Species, but he revisited the topic in a two-volume treatise less than a decade later. In addition to drawing much of his information about heredity from studies of domesticated animals and plants, Darwin saw important parallels between the process of artificial selection by humans and natural selection by the environment. There was resistance to this analogy even among Darwin’s contemporary supporters when it was proposed, and there also has been disagreement among historians and philosophers regarding the role that the analogy with artificial selection actually played in the discovery of natural selection. Regardless of these issues, the analogy between artificial and natural selection remains important in both research and education in evolution. In particular, the present article reviews ten lessons about evolution that can be drawn from the modern understanding of domestication and artificial selection. In the process, a basic overview is provided of current approaches and knowledge in this rapidly advancing field.
T. Ryan GregoryEmail:
  相似文献   

5.
Eighteen seventy-four was a high point in evolutionary embryology. Thanks to Charles Darwin, the theory of evolution by natural selection provided a revolutionary new way of viewing the relationships and origins of organisms on Earth. Thanks to Ernst Haeckel, embryos were the way to study evolution (Haeckel in Generelle morphologie der organismen, vols 1, 2. Verlag Georg Reimer, Berlin, 1866)—it really was embryos in evolution—and recapitulation was in the air. Thanks to Anton Dohrn, a new research facility was on the ground, designed, located and structured to facilitate the study of embryos in evolution. Anton Dohrn devised, designed, financed, supervised the construction and then administered the Naples Zoological Station specifically so that researchers from all nations would have a facility where Darwin’s theory of evolution by natural selection could be tested. The zoologists who took advantage of the brand new facility within weeks of its opening late in 1873 established lines of research into evolutionary embryology, the field we now know as evolutionary developmental biology (evo-devo), the study of embryos in evolution. I examine the approach taken by Ambrosius Hubrecht, the first Dutch embryologist to undertake research at the station, and then evaluate the research of three British zoologists—E. Ray Lankester, Albert Dew-Smith, and Francis Maitland (Frank) Balfour. All four sought insights into origins, especially vertebrate origins that rested on comparative embryology, homology, germ layers, and a Darwinian approach to origins.
Brian K. HallEmail:
  相似文献   

6.
As a Cambridge University undergraduate Charles Darwin was fascinated and convinced by the argument for intelligent design, as set forth in William Paley’s 1802 classic, Natural Theology. Subsequently, during his five-year voyage on HMS Beagle (1831–1836), Darwin interpreted his biological findings through a creationist lens, including the thought-provoking evidence he encountered during his historic visit to the Galápagos Islands in September and October 1835. After his return to England in 1836 and his subsequent conversion to the idea of organic evolution in March 1837, Darwin searched for a theory that would explain both the fact of evolution and the widespread appearance of intelligent design. His insight into the process of natural selection, which occurred in September 1838, provided this alternative explanation. Darwin’s Origin of Species (1859) exemplifies his skillful deployment of the hypothetico-deductive method in testing and refuting the arguments for intelligent design that he had once so ardently admired.  相似文献   

7.
During his historic Galápagos visit in 1835, Darwin spent nine days making scientific observations and collecting specimens on Santiago (James Island). In the course of this visit, Darwin ascended twice to the Santiago highlands. There, near springs located close to the island’s summit, he conducted his most detailed observations of Galápagos tortoises. The precise location of these springs, which has not previously been established, is here identified using Darwin’s own writings, satellite maps, and GPS technology. Photographic evidence from excursions to the areas where Darwin climbed, including repeat photography over a period of four decades, offers striking evidence of the deleterious impact of feral mammals introduced after Darwin’s visit. Exploring the impact that Darwin’s Santiago visit had on his thinking – especially focusing on his activities in the highlands – raises intriguing questions about the depth of his understanding of the evolutionary evidence he encountered while in the Galápagos. These questions and related insights provide further evidence concerning the timing of Darwin’s conversion to the theory of evolution, which, despite recent claims to the contrary, occurred only after his return to England.  相似文献   

8.
9.
Almost any modern reader’s first encounter with Darwin’s writing is likely to be the “Historical Sketch,” inserted by Darwin as a preface to an early edition of the Origin of Species, and having since then appeared as the preface to every edition after the second English edition. The Sketch was intended by him to serve as a short “history of opinion” on the species question before he presented his own theory in the Origin proper. But the provenance of the “Historical Sketch” is somewhat obscure. Some things are known about its production, such as when it first appeared and what changes were made to it between its first appearance in 1860 and its final form, for the fourth English edition, in 1866. But how it evolved in Darwin’s mind, why he wrote it at all, and what he thought he was accomplishing by prefacing it to the Origin remain questions that have not been carefully addressed in the scholarly literature on Darwin. I attempt to show that Darwin’s various statements about the “Historical Sketch,” made primarily to several of his correspondents between 1856 and 1860, are somewhat in conflict with one another, thus making problematic a satisfactory interpretation of how, when, and why the Sketch came to be. I also suggest some probable resolutions to the several difficulties. How Darwin came to settle on the title “Historical Sketch” for the Preface to the Origin is not certain, but a guess may be ventured. When he first submitted the text to Asa Gray in February 1860 he called it simply “Preface Contributed by the Author to this American Edition” (Burkhardt et al., eds., vol. 8, 1993, p. 572; the collected correspondence is hereafter cited as CCD). In fact he had thought of it as being properly called a Preface much earlier, perhaps as early as 1856, as will be seen in what follows. It came to be called “An Historical Sketch of the Recent Progress of Opinion on the Origin of Species” only in the third English edition, April 1861. This is the title it retained thereafter, with the exception of an addition to the title in the sixth English edition, “Previously to the Publication of the First Edition of this Work” (Peckham, 1959, pp. 20, 59). The word “sketch,” on the other hand was one of two words Darwin commonly used in private correspondence to refer to the book that would later become the Origin, the other word being “Abstract,” and both signifying that Darwin thought of the work as being a resume rather than a full-fledged study (e.g., letter to J.D. Hooker, May 9 1856, CCD vol. 6 p. 106; letter to Baden Powell January 18 1860, CCD vol. 8 p. 41; letter to Lyell 25 June 1858, CCD v. 7, 1991, pp. 117–8; letter to Lyell May 1856, CCD, v. 6 p. 100). The most likely source of the title “Historical Sketch” for Darwin’s Preface is Charles Lyell’s Principles of Geology in which, beginning with the third edition (1834), Lyell added titles to his chapters, calling chapters 2–4 “Historical Sketch of the Progress of Geology” (Secord, in Lyell [1997], p. xlvii; for other uses by Lyell of this expression, cf. Porter, 1976, p. 95; idem 1982, p. 38; and Lyell, 1830 [1990], p. 30). Further parallels between Lyell’s Introduction and Darwin’s “Historical Sketch” in terms of content and strategy are suggested below.  相似文献   

10.
Godfrey-Smith (2001) has distinguished three types of adaptationism. This article builds on his analysis, and revises it in places, by distinguishing seven varieties of adaptationism. This taxonomy allows us to clarify what is at stake in debates over adaptationism, and it also helps to cement the importance of Gould and Lewontin’s ‘Spandrels’ essay. Some adaptationists have suggested that their essay does not offer any coherent alternative to the adaptationist programme: it consists only in an exhortation to test adaptationist hypotheses more thoroughly than was usual in the 1970s. Here it is argued that the ‘Spandrels’ paper points towards a genuinely non-adaptationist methodology implicit in much evolutionary developmental biology. This conclusion helps to expose the links between older debates over adaptationism and more recent questions about the property of evolvability.
Tim LewensEmail: Email:
  相似文献   

11.
In 2001 Carijoa riisei, an octocoral native to the tropical Western Atlantic, was discovered overgrowing black corals in the Au’au Channel in Hawaii. In this paper data from a 2001 survey are reanalyzed and combined with new data from 2003 and 2004 to assess the ecological impact in greater detail. C. riisei differentially affected reproductively mature black coral colonies with maximum impact between 80 and 105 m. The pattern of C. riisei overgrowth on black corals and C. riisei on the substrata appears to be bounded by high irradiance in shallow water and cold temperature in deep water. Evidence suggests that the C. riisei settlement on black corals is facilitated by other epifauna. Once established, C. riisei spreads vegetatively and smothers the coral. The success of the C. riisei invasion appears to be unaided by anthropogenic disturbance and is at least partially attributable to Hawaii’s depauperate shallow-water (<100 m) octocoral fauna.
Richard W. GriggEmail:
  相似文献   

12.
Since 1985, China has established three breeding herds of Père David’s deer: the Beijing Père David’s Deer Park (39°07′N, 116°03′E), the Dafeng Père David’s Deer Nature Reserve (33°05′N, 120°49′E) and Shishou (Tianezhou) Père David’s Deer Nature Reserve (29°49′N, 112°33′E), through reintroductions of about 30–40 founders. Since establishment, all three populations have grown steadily. However, genetic backgrounds in those populations are still unknown. We studied the genetic diversity in Père David’s deer and genetic consequences of population relocations in China. We revealed that genetic diversity was extremely low in Père David’s deer populations in China. Only a single mtDNA D-loop haplotype was found in the deer, furthermore, only five polymorphic microsatellite loci were screened out from 84 pairs of species-transferred primers. Genetic makeup in the three Père David’s deer populations were significantly different (P < 0.01). H E and allelic richness in the Tianezhou population were the highest (0.54, 2.60, n = 31), Beijing population (0.52, 2.4, n = 125) showed the second highest measures, while the Dafeng population (0.46, 2.39, n = 39) measured lowest. Our results suggest that effective management of a species of low genetic diversity like the Père David’s deer should consider the genetic background of each founder to make sure genetic variations are preserved in both source population and relocated population. Now, the Tianezhou population is the most appropriate source population in China when establishing new Père David deer populations in the wild.
Zhigang JiangEmail:
  相似文献   

13.
Evolutionary biology presents a bewildering array of phenomena to scientists and students alike—ranging from molecules to species and ecosystems; and embracing 3.8 billion years of life’s history on earth. Biological systems are arranged hierarchically, with smaller units forming the components of larger systems. The evolutionary hierarchy, based on replication of genetic information and reproduction, is a complex of genes/organisms/demes/species and higher taxa. The ecological hierarchy, based on patterns of matter–energy transfer, is a complex of proteins/organisms/avatars/local ecosystems/regional ecosystems. All organisms are simultaneously parts of both hierarchical systems. Darwin’s original formulation of natural selection maps smoothly onto a diagram where the two hierarchical systems are placed side-by-side. The “sloshing bucket” theory of evolution emerges from empirical cases in biological history mapped onto this dual hierarchy scheme: little phenotypically discernible evolution occurs with minor ecological disturbance; conversely, greatest concentrations of change in evolutionary history follow mass extinctions, themselves based on physical perturbations of global extent. Most evolution occurs in intermediate-level regional “turnovers,” when species extinction leads to rapid evolution of new species. Hierarchy theory provides a way of integrating all fields of evolutionary biology into an easily understood—and taught—rubric.
Niles EldredgeEmail:
  相似文献   

14.
Aglaia bourdillonii is a plant narrowly endemic to the southern portion of the Western Ghats (WG), in peninsular India. To understand its ecological and geographic distribution, we used ecological niche modeling (ENM) based on detailed distributional information recently gathered, in relation to detailed climatic data sets. The ENMs successfully reconstructed key features of the species’ geographic distribution, focusing almost entirely on the southern WG. Much of the species’ distributional potential is already under protection, but our analysis allows identification of key zones for additional protection, all of which are adjacent to existing protected areas. ENM provides a useful tool for understanding the natural history of such rare and endangered species.
M. Irfan-UllahEmail: Email:
  相似文献   

15.
Our investigations suggest that the usually observed avoidance by O. ununguis of current year’s twigs of P. glauca ‘Conica’ as a place for feeding and development may be connected with their morphological and anatomical structure as well their biochemical composition. Needles of the current year’s twigs were covered with a thicker layer of wax and formed more extensive epidermis cell walls, in comparison with needles of 1-year-old twigs. Young needles also showed lower concentration of reducing sugars and soluble proteins, which might additionally reduce their nutritional suitability for mite development. Differences were also found between the 1-year-old growth and current growth in contribution of essential oils and a range of other compounds. Further analyses of the effect of these compounds on mite behavior may provide additional explanation of the feeding preferences of the mite.
Barbara CzajkowskaEmail:
  相似文献   

16.
This abstract is a prologue to this paper. Prior to his health failing, Martin Gibbs began writing remembrances of his education and beginning a science career, particularly on the peaceful uses of nuclear radiation, at the U.S. Brookhaven National Laboratory (BNL), Camp Upton, NY. Two years before his death Martin provided one of us (Govindjee) a draft text narrating his science beginnings in anticipation of publication in Photosynthesis Research. Govindjee edited his draft and returned it to him. Later, when it became difficult for him to complete it, he phoned Govindjee and expressed the desire that Govindjee publish this story, provided he kept it close to his original. Certain parts of Martin’s narrations have appeared without references (Gibbs 1999). The Gibbs family made a similar request since the narrations contained numerous early personal accounts. Clanton Black recently presented an elegant tribute on Martin Gibbs and his entire science career (Black 2008). Clanton was given the draft, which he and Govindjee then agreed to finish. This chronicle is their effort to place Gibbs’s narrations about his education and his maturation scientifically, in context with the beginnings of biological chemistry work with carbon-14 at the BNL (see Gibbs 1999). Further, these events are placed in context with those times of newly discovered radioisotopes which became available as part of the intensive nuclear research of World War II (WW II). Carbon-14, discovered during WW II nuclear research in 1940, was extremely useful and quickly led to the rapid discovery of new carbon metabolism pathways and biochemical cycles, e.g., photosynthetic carbon assimilation, within a decade after WW II.
GovindjeeEmail:
  相似文献   

17.
In 1921 the U.S. Office of Indian Affairs (OIA) attempted to suppress ritual public performances in the Southwestern Pueblos. Several reams of documenting text were used to support this authorizing text. These documenting texts were affidavits purporting to describe “degrading tendencies” and “immoral relations” in the Puebloan habitus. The OIA used these sensationalized representations of the habitus of Native Americans’ communities to promote and justify the policy of forced acculturation in the waning days of its implementation. What is perplexing is that these supporting texts were trotted out so late, decades after the major thrusts of the forced acculturation program had first been put into play. My purpose is to analyze the place of these texts in the forced acculturation program. I suggest, following Anne McClintock (1995) that the obsessive fascination that the public performances seem to have held for those who reported on and condemned them, represent a layered and complex intertwining of ambivalence about domestic social relations and gender with confusion about culture and labor. Examining a slice of the U.S. Government’s policy of forced acculturation in a corner of the Native American world reveals a potentially implosive anxiety of reconciling the imposition of a desired mode of production with the persistence of a habitus perceived as celebrating the violation of appropriate domesticity.
Richard O. ClemmerEmail:
  相似文献   

18.
19.
I review George Levine’s provocative and highly original book Darwin Loves You. Levine, whose “home discipline” is English Literature, offers a compelling interpretation of Darwin’s works, evaluating their content and Darwin’s prose style to identify a distinctly Darwinian attitude toward nature as a source of meaning and value. Levine believes that Darwin exemplifies the capacity to feel “enchantment” about the natural world, suggesting that, if Darwin’s example were followed, a “Darwinian re-enchantment of the world” would be brought about. This would offer a secular, non-supernatural basis for purpose, meaning, and value. I conclude with a few critical remarks about the scope and cogency of Levine’s proposal.  相似文献   

20.
Recent Darwin scholarship has provided grounds for recognising the Origin as a literary as well as a scientific achievement. While Darwin was an acute observer, a gifted experimentalist and indefatigable theorist, this essay argues that it was also crucial to his impact that the Origin transcended the putative divide between the scientific and the literary. Analysis of Darwin’s development as a writer between his journal-keeping on HMS Beagle and his construction of the Origin argues the latter draws on the pattern of the Romantic or Kantian sublime. The Origin repeatedly uses strategies which challenge the natural-theological appeal to the imagination in conceiving nature. Darwin’s sublime coaches the Origin’s readers into a position from which to envision nature that reduces and contains its otherwise overwhelming complexity. As such, it was Darwin’s literary achievement that enabled him to fashion a new ‘habit of looking at things in a given way’ that is the centrepiece of the scientific revolution bearing his name.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号