首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
As a further development of previous investigations showing that different staphylococcal species display different bacteriolytic activity patterns (lyogroups), the bacteriolytic enzymes excreted by three different Staphylococcus species, Staphylococcus aureus (lyogroup I), S. simulans (lyogroup II), and S. saprophyticus (lyogroup IV); have been purified and characterized. A representative strain from each species was grown in a preselected medium made of fully dialyzable products. Culture supernatants were collected in the appropriate growth phase. Two different affinity adsorbents were used for enzyme purification. One was obtained by coupling lysozyme-digested pure peptidoglycan from Micrococcus luteus to cyanogen bromide-activated Sepharose 4B. The second affinity adsorbent used was chitin. The S. aureus bacteriolytic enzyme bound to the solubilized peptidoglycan but not to chitin, whereas the opposite was true for the S. simulans enzyme. The bacteriolytic enzyme from S. saprophyticus did not bind to either the Sepharose 4B-peptidoglycan resin or to chitin, and its purification was achieved by two ion-exchange chromatography steps combined with gel filtration. All three enzymes were purified to apparent homogeneity. Their subsequent characterization indicated that all acted as endo-beta-N-acetylglucosaminidases. However, the three glucosaminidases differed significantly in their kinetics of activity and bacteriolytic spectrum against heat-killed cells of a variety of microorganisms. Very different values also resulted from molecular weight determinations: 80,000 for the S. aureus enzyme, 45,000 for the S. simulans enzyme, and 31,000 for the S. saprophyticus enzyme. Other important differences were observed in their stability, optimal pH and ionic strength for their activity, and their responses to temperature and divalent cations. These results confirmed the previous proposal that different staphylococcal species excrete different lytic enzymes.  相似文献   

2.
Protoplasts (autoplasts) of Streptococcus faecalis were produced by the action of native autolytic N-acetylmuramidase in the absence of added peptidoglycan hydrolases and were grown in osmotically stabilized medium containing L-[3H]lysine and D-[14C]alanine. To reduce the level of muralytic hydrolysis of glycan chains during growth, heat-inactivated cell walls were added to the medium to bind autolytic enzyme, and tetracycline (1 mug/ml) was added to inhibit further enzyme synthesis. Under these conditions, protoplasts synthesized newly labeled peptidoglycan in the form of soluble, infrequently peptide cross-linked glycan chains which were released into the supernatant medium. These relatively large glycan chains were not transferred to exogenously added cell walls.  相似文献   

3.
Morphological mutants of Micrococcus lysodeikticus (luteus) were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. They occurred on plates in large, regular cell packets, whereas the parent cells usually grew as groups of two or four cells or as short chains. The mutants required a much higher concentration of Mg2+ for growth than the parent cells. The concentrations of Mg2+ and other components of the culture medium tested did not significantly affect the morphology of either the parent or mutant strains. The mutant strains were not agglutinated by antiserum to M. lysodeikticus, which mainly interacts with teichuronic acid on the cell surface, and chemical analysis of isolated cell walls of the mutants indicated the absence of teichuronic aicd. No significant differences were detected between the parent and mutant strains in the amounts of other cell wall components, e.g., peptidoglycan, protein, and teichoic acid. They possible roles of teichuronic acid in cell separation and attachment of divalent cations are discussed.  相似文献   

4.
Staphylococcus capitis EPK1 produces a glycylglycine endopeptidase, ALE-1 (M. Sugai, T. Fujiwara, T. Akiyama, M. Ohara, H. Komatsuzawa, S. Inoue, and H. Suginaka, J. Bacteriol. 179:1193-1202, 1997), which hydrolyzes interpeptide pentaglycine chains of cell wall peptidoglycan of S. aureus. Characterizations of the enzyme activity and cloning of ale-1 revealed that ALE-1 is very similar to prolysostaphin produced by S. simulans bv. staphylolyticus. Strain EPK1 is resistant to lysis by ALE-1 and by lysostaphin. A gene that renders the cells resistant to glycylglycine endopeptidase (epr) was found 322 bp upstream of and in the opposite orientation to ale-1. The deduced amino acid sequence of epr showed similarities to FemA and FemB, which have been characterized as factors essential for methicillin resistance of S. aureus. Inactivation of either femA or femB causes decreased resistance to methicillin, increased resistance to lysostaphin, and decreased glycine content in the interpeptide chains of peptidoglycan. Therefore, femAB is suggested to be involved in the addition of glycine to pentapeptide peptidoglycan precursor. S. aureus with epr on a multicopy plasmid had phenotypes similar to those of femAB mutants except that it did not alter resistance level to methicillin. These results suggest that epr and femAB belong to the protein family involved in adding amino acids to the pentapeptide peptidoglycan precursor and that epr is involved in the addition of serine to the pentapeptide.  相似文献   

5.
Two enzyme activities involved in the biosynthesis of peptidoglycan in Micrococcus luteus (sodonensis), a transglycosidase and a phosphodiesterase, have been demonstrated in isolated membrane preparations. The transglycosidase activity promotes the in vitro synthesis of an uncross-bridged peptidoglycan that is completely susceptible to lysozyme. This in vitro-synthesized peptidoglycan consists of 76% "soluble" and 24% "insoluble" material. The soluble peptidoglycan is primarily a single low-molecular-weight species of approximately 20 disaccharide peptide units. "Insoluble" peptidoglycan, which likely represents newly synthesized material incorporated into an existing cell wall, was solubilized by butanol extraction, and the two were compared. The phosphodiesterase activity demonstrated in this system cleaves uridine diphosphate-N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-lysyl-D-alanyl-D-alanine to yield N-acetylmuramyl-L-alanyl-D-isoglutamyl-L-lysyl-D-alanyl-D-alanine plus uridine 5'-monophosphate plus inorganic phosphate. This phosphodiesterase activity, not detected under normal transglycosidase assay conditions, is a recycling mechanism and acts indirectly through formation and subsequent cleavage of a lipid-linked intermediate.  相似文献   

6.
The culturability of several actinobacteria is controlled by resuscitation-promoting factors (Rpfs). These are proteins containing a c. 70-residue domain that adopts a lysozyme-like fold. The invariant catalytic glutamate residue found in lysozyme and various bacterial lytic transglycosylases is also conserved in the Rpf proteins. Rpf from Micrococcus luteus, the founder member of this protein family, is indeed a muralytic enzyme, as revealed by its activity in zymograms containing M. luteus cell walls and its ability to (i) cause lysis of Escherichia coli when expressed and secreted into the periplasm; (ii) release fluorescent material from fluorescamine-labelled cell walls of M. luteus; and (iii) hydrolyse the artificial lysozyme substrate, 4-methylumbelliferyl-beta-D-N,N',N'-triacetylchitotrioside. Rpf activity was reduced but not completely abolished when the invariant glutamate residue was altered. Moreover, none of the other acidic residues in the Rpf domain was absolutely required for muralytic activity. Replacement of one or both of the cysteine residues that probably form a disulphide bridge within Rpf impaired but did not completely abolish muralytic activity. The muralytic activities of the Rpf mutants were correlated with their abilities to stimulate bacterial culturability and resuscitation, consistent with the view that the biological activity of Rpf results directly or indirectly from its ability to cleave bonds in bacterial peptidoglycan.  相似文献   

7.
Lysozyme from bacteriophage T4 was found to digest a soluble, uncrosslinked peptidoglycan which is secreted by cells of Micrococcus luteus when incubated in the presence of penicillin G. Analysis of the enzymatic degradation products shows that T4 acts as an endo-acetylmuramidase capable of cleaving glycosidic bonds only at muramic acid residues that are substituted with peptide side-chains. The results indicate that the secreted peptidoglycan may consist of a mixture of chains, approximately half of which are substituted by peptide side chains on most of their muramic acid residues, while the other half is made up of chains in which the muramic acid moieties are unsubstituted.  相似文献   

8.
Membrane suspensions prepared from Micrococcus luteus (sodonensis) in both the exponential and stationary phases of growth contained a transglycosidase activity capable of synthesizing linear peptidoglycan. Exponential-phase membranes also contained an N-acetylmuramyl-L-alanine amidase activity which degraded the peptidoglycan as it was formed. The product of this amidase was purified and found to be free pentapeptide. The amidase was specific for peptidoglycan and could not attack lower-molecular-weight substrates even though the susceptible bond was present. Crude cell wall preparations isolated from exponential-phase cells also contained high levels of amidase. This cell wall-bound amidase would preferentially degrade in vitro-synthesized peptidoglycan over its own cell wall. Amidase activity could be solubilized from both cell walls and membranes by Triton X-100 treatment, butanol extraction, or LiCl extraction. Both membrane- and cell wall-derived amidases, solubilized by LiCl extraction, appeared to be of high molecular weight (greater than 150,000). Once solubilized, these wall- and membrane-derived amidases could attack the cross-bridged peptidoglycan of purified native cell walls, whereas bound amidases could not.  相似文献   

9.
Staphylococcus simulans biovar staphylolyticus produces an extracellular glycylglycine endopeptidase (lysostaphin) that lyses other staphylococci by hydrolyzing the cross bridges in their cell wall peptidoglycans. The genes for endopeptidase (end) and endopeptidase resistance (epr) reside on plasmid pACK1. An 8.4-kb fragment containing end was cloned into shuttle vector pL150 and was then introduced into Staphylococcus aureus RN4220. The recombinant S. aureus cells produced endopeptidase and were resistant to lysis by the enzyme, which indicated that the cloned fragment also contained epr. Treatments to remove accessory wall polymers (proteins, teichoic acids, and lipoteichoic acids) did not change the endopeptidase sensitivity of walls from strains of S. simulans biovar staphylolyticus or of S. aureus with and without epr. Immunological analyses of various wall fractions showed that there were epitopes associated with endopeptidase resistance and that these epitopes were found only on the peptidoglycans of epr+ strains of both species. Treatment of purified peptidoglycans with endopeptidase confirmed that resistance or susceptibility of both species was a property of the peptidoglycan itself. A comparison of the chemical compositions of these peptidoglycans revealed that cross bridges in the epr+ cells contained more serine and fewer glycine residues than those of cells without epr. The presence of the 8.4-kb fragment from pACK1 also increased the susceptibility of both species to methicillin.  相似文献   

10.
The peptidoglycan layer of Spirillum serpens cell walls was isolated from intact cells after treatment with sodium dodecylsulfate and digestion with Pronase. The isolated peptidoglycan contained glucosamine, muramic acid, alanine, glutamic acid, and meso-diaminopimelic acid in the approximate molar ratio of 1:1:2:1:1. Aspartic acid and glycine were the only other amino acids found in significant quantities. N-terminal amino acid analyses of the tetrapeptide amino acids in the peptidoglycan revealed that 54% of the diaminopimelic acid molecules are involved in cross-linkage between tetrapeptides. This amount of cross-linkage is greater than that found in the peptidoglycan of previously studied cell walls of gram-negative bacteria. The polysaccharide backbone was isolated, after myxobacter AL-1 enzyme digestion of the peptidoglycan, by fractionation with ECTEOLA-cellulose and Sephadex G-100. An average length of 99 hexosamines for the polysaccharide chains was found (ratio of total hexosamines to reducing end groups).  相似文献   

11.
The mode of action of a bacteriophage lytic enzyme on cell walls of Bacillus stearothermophilus (NCA 1503-4R) has been investigated. The enzyme is an endopeptidase which catalyzes the hydrolysis of the l-alanyl-d-glutamyl linkage in peptide subunits of the cell wall peptidoglycan. Preliminary studies on the soluble components in lytic cell wall digests indicate that the glycan moiety is composed of alternating glucosamine and muramic acid; one half of the muramic acid residues contain the tripeptide, l-alanyl-d-glutamyldiaminopimelic acid, and the remaining residues contain the tetrapeptide, l-alanyl-d-glutamyldiaminopimeyl-d-alanine. Almost one half of the peptide subunits are involved in cross-linkages of chemotype I. A structure for the cell wall peptidoglycan is proposed in the light of these findings.  相似文献   

12.
Addition of cell walls to the peptidoglycan synthetase-acceptor system containing vancomycin (50 μg/ml) prevented the inhibition by the antibiotic. In addition, the inhibition of incorporation of [14C]muramyl-pentapeptide into peptidoglycan in the presence of vancomycin was reversed by the addition of cell walls to the assay mixture at 60 min. Cell walls previously saturated with vancomycin lost their ability to reverse the inhibition by the antibiotic. The inhibition of peptidoglycan synthesis by ristocetin was partially reversed by the addition of cell walls. The initial stage in peptidoglycan synthesis is catalyzed by phospho-N-acetyl(NAc)muramyl-pentapeptide translocase (uridine 5′-phosphate) according to the reaction: UDP-NAc-muramyl-pentapeptide + acceptor acceptor-phospho-NAc-muramyl-pentapeptide + UMP where acceptor is C55-isoprenoid alcohol phosphate. Vancomycin stimulates the transfer of phospho-NAc-muramyl-pentapeptide to the acceptor, and the addition of cell walls to this assay mixture prevented the stimulation of transfer. In addition to the transfer reaction, the enzyme catalyzes the exchange of [3H]uridine monophosphate (UMP) with UDP-NAc-muramyl-pentapeptide. The exchange reaction is effectively inhibited by vancomycin. For example, 60 μg of vancomycin per ml inhibited the rate of exchange by 50%. Addition of cell walls restored the exchange of UMP with the UMP moiety of UDP-NAc-muramyl-pentapeptide. Thus, cell walls appeared to have a higher affinity for vancomycin than did either the peptidoglycan synthetase-acceptor system or phospho-NAc-muramyl-pentapeptide translocase. These results provide support for the proposal made by Best and Durham that the effective binding of vancomycin to the cell wall could result in the inhibition of transfer of membrane-associated peptidoglycan chains to the growing wall.  相似文献   

13.
A sensitive and rapid fluorometric lysozyme assay is described. It is based on the hydrolysis of fluorescamine-labelled peptidoglycan from Micrococcus luteus cell walls. Lysozyme levels as low as 0.1 microgram can be detected.  相似文献   

14.
Autolytic activity in the soluble and sediment fractions of sonicates of the spiral and the coccoid form of Campylobacter upsaliensis could not be demonstrated by native (nondenaturing) polyacrylamide gel electrophoresis (PAGE). Autolysins were detected, however, by using denaturing sodium dodecyl sulfate (SDS)-PAGE gels containing either purified Escherichia coli peptidoglycan or whole cells of Micrococcus luteus (Micrococcus lysodeikticus) as the turbid substrate, with subsequent renaturation by treatment with Triton X-100 buffer. In renaturing gels that contained Escherichia coli peptidoglycan, 14 putative autolytic bands ranging from 200 to 12 kDa were detected. In similar gels containing whole cells of M. luteus, only a single band appeared with a molecular mass of 34 kDa. This band corresponded to one of the bands present in the gels containing Escherichia coli peptidoglycan. This common autolysin was isolated by adsorbing it from Campylobacter upsaliensis soluble fractions onto M. luteus cells and then subjecting these cells to renaturing SDS-PAGE in gels containing Escherichia coli peptidoglycan. The 34-kDa autolysin differed from a single 51-kDa autolysin unique to the M. luteus cells, and when isolated from an SDS-PAGE gel, was pure when tested by isoelectric focusing. The N-terminal amino acid sequence analysis showed the first 15 amino acids of the 34-kDa autolysin to have 67% identity to a part of antigenic protein PEB4 of Campylobacter jejuni. The purified autolysin was used to immunize rabbits and the antibodies produced precipitated autolytic activity from cell lysates. The specificity of the antibodies was shown by Western blotting: only a single specific band occurred, with a molecular mass of 34 kDa, and thus it seems unlikely that the 34-kDa autolysin was derived from any of the other autolysins that were detected.  相似文献   

15.
Pep 5 and nisin are cationic peptide antibiotics which in addition to their membrane-disruptive action induce autolysis in staphylococci. To investigate the mechanism of lysis induction, the influence of the peptides on the activity of the N-acetylmuramoyl-L-alanine amidase of Staphylococcus simulans 22 was studied. In experiments with isolated cell walls at low ionic strength, the amidase activity was stimulated by the addition of Pep 5 and nisin, as well as by polylysine, streptomycin, and mono- and divalent cations. The concentrations necessary for activation depended on the nature of the cation and ranged from 5 microM for poly-L-lysine (n = 17) to 150 mM for Na+ at a cell wall concentration of 100 micrograms of cell walls per ml. No effect was observed if the cell walls were devoid of polyanionic constituents. Kinetic data suggested that the amidase bound to the teichoic and teichuronic acids of the cell wall and was thereby inhibited. Cationic molecules reversed this inhibition, most likely by displacing the enzyme from the polyanions. If the concentrations of the larger peptides were high in relation to cell wall concentration, the activation turned into inhibition, presumably by interfering with the access of the enzyme to its substrate. These experiments demonstrate that the activity of the amidase is modulated by basic peptides in vitro and help to explain how Pep 5 and nisin may cause lysis of treated cells.  相似文献   

16.
Y Chen  S Miyata  S Makino    R Moriyama 《Journal of bacteriology》1997,179(10):3181-3187
The exudate of fully germinated spores of Clostridium perfringens S40 in 0.15 M KCI-50 mM potassium phosphate (pH 7.0) was found to contain another spore-lytic enzyme in addition to the germination-specific amidase previously characterized (S. Miyata, R. Moriyama, N. Miyahara, and S. Makino, Microbiology 141:2643-2650, 1995). The lytic enzyme was purified to homogeneity by anion-exchange chromatography and shown to be a muramidase which requires divalent cations (Ca2+, Mg2+, or Mn2+) for its activity. The enzyme was inactivated by sulfhydryl reagents, and sodium thioglycolate reversed the inactivation by Hg2+. The muramidase hydrolyzed isolated spore cortical fragments from a variety of wild-type organisms but had minimal activity on decoated spores and isolated cell walls. However, the enzyme was not capable of digesting isolated cortical fragments from spores of Bacillus subtilis ADD1, which lacks muramic acid delta-lactam in its cortical peptidoglycan. This indicates that the enzyme recognizes the delta-lactam residue peculiar to spore peptidoglycan, suggesting an involvement of the enzyme in spore germination. Immunochemical studies indicated that the muramidase in its mature form is localized on the exterior of the cortex layer in the dormant spore. A gene encoding the muramidase, sleM, was cloned into Escherichia coli, and the nucleotide sequence was determined. The gene encoded a protein of 321 amino acids with a deduced molecular weight of 36,358. The deduced amino acid sequence of the sleM gene indicated that the enzyme is produced in a mature form. It was suggested that the muramidase belongs to a separate group within the lysozyme family typified by the fungus Chalaropsis lysozyme. A possible mechanism for cortex degradation in C. perfringens S40 spores is discussed.  相似文献   

17.
Various peptidoglycan fragments, different in mode of cross-linking and molecular size, were isolated, and the elicitor activity was tested for induction of antibacterial protein synthesis in larvae of Bombyx mori. Linear uncross-linked peptidoglycans from Bacillus licheniformis and Micrococcus luteus were effective elicitors, similar to the directly cross-linked peptidoglycan from B. licheniformis cell wall. The fragments of uncross-linked peptidoglycan with a sugar chain length of four or more were active elicitors, but the disaccharide unit had no elicitor activity. The minimum structure of peptidoglycan required for induction of antibacterial protein synthesis was determined to be two repeating N-acetylglucosamine-N-acetylmuramic acid units with peptide side chains.  相似文献   

18.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

19.
溶葡球菌酶的比色测定及某些性质的研究   总被引:1,自引:0,他引:1  
溶葡球菌酶是一种专一地溶解葡萄球菌的溶菌酶。和蛋清溶菌酶一样,通常采用比浊法进行测定,底物或为葡萄球菌、或为该菌的细胞壁、或为该菌细胞壁的肽聚糖。本文报道一种简便灵敏的溶葡球菌酶比色测定法,以偶联了KNR艳蓝染料的葡萄球菌(死)细胞或偶联了KNR艳蓝染料的该菌细胞壁肽聚糖为色源底物,根据酶作用后释放出的可溶性KNR生成物计算酶活性。本文采用该比色测定法检定了溶葡球菌酶的某些动力学性质。  相似文献   

20.
The action of purified N-acetylmuramoylhydrolase (muramidase, EC 3.2.1.17) of Streptococcus faecium ATCC 9790 on linear, uncross-linked, soluble, peptidoglycan chains produced by the same organism in the presence of benzylpenicillin was characterized as a processive exodisaccharidase. Specific labels, one [( 14C]Gal) added to the nonreducing ends of chains, and the other (3H from [3H]NaBH4) incorporated into the reducing ends of the chains, were used to establish that an enzyme molecule binds at the nonreducing terminus and sequentially hydrolyzes the glycosidic bonds, releasing disaccharide-peptide units. An enzyme molecule remains bond to a chain, and is not released at a detectable rate, until hydrolysis of that chain is complete. Reaction rates increased with the length of the polymer chain to give a maximum of 91 bonds cleaved/min/enzyme molecule for hydrolysis of a continuous polymeric substrate. The relationship between hydrolytic rate and glycan chain length is consistent with hydrolysis of bonds within the chain followed by slow release of enzyme from the distal, reducing terminus. This mechanism was experimentally confirmed by analysis of product formation during hydrolysis with stoichiometric mixtures of enzyme and soluble peptidoglycan chains. Kinetic analyses showed an apparent Km of 0.17 microM for the enzyme, independent of substrate polymer length. The dissociation constant for the initial enzyme-substrate complex was calculated to be 1.5 nM. Kinetic analyses are consistent with one catalytic site per enzyme molecule. The Kcat/Km value of 9 X 10(6) M-1 S-1 is near the limit imposed by diffusion for the initial hydrolytic events when long chains are hydrolyzed. The kinetic and physical properties of this muramidase are highly consistent with its location outside of the cellular permeability barrier and its ability to remain with and hydrolyze appropriate bonds in the cell wall in such an environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号