首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intensity-response (I-R) relations for four wind-sensitive giant interneurons (GIs 8-1, 9-1, 9-2 and 9-3) in the fourth-, sixth- and last-instar nymphs of the cricket, Gryllus bimaculatus, were investigated using a unidirectional air current stimulus in order to explore the functional changes of GIs during postembryonic development. Contrary to our expectations, the response properties of GIs in nymphs were largely different from those in adults. The response magnitude of GI 8-1 in an intact cricket decreased during development, i.e. the GI in younger insects showed a larger response magnitude. Although the response magnitudes of GIs 9-1 and 9-2 were almost identical during the nymphal period, a significant decrease was observed after the imaginal ecdysis. During the nymphal period, the response magnitude of GI 9-3 increased according to the developmental stage. However, it decreased significantly after the imaginal ecdysis. We also investigated the response magnitudes of the GIs in nymphs after unilateral cercal ablation. From the results of ablation experiments, the changes in excitatory and/or inhibitory connections between filiform hairs and each GI during postembryonic development were revealed.  相似文献   

2.
The response properties of four wind-sensitive giant interneurons (GIs) 8-1, 9-1, 9-2 and 9-3 in the fourth-instar nymphs of the cricket Gryllus bimaculatus were investigated to clarify the differences and/or similarities of the escape eliciting neural system between nymphs and adults. Air current was presented to the animal from 12 different directions in the horizontal plane, and the intensity-response curves for each GI were obtained at each stimulus direction. The intensity-response curves showed that the response magnitudes of GI 8-1 in the fourth-instar crickets increased with stimulus velocity up to 300 mm/s regardless of the stimulus direction. The response magnitudes of GI 9-1 in the nymphs reached a plateau at a stimulus velocity of 30 mm/s in most stimulus directions. The response magnitudes of GIs 9-2 and 9-3 increased with stimulus velocity up to 300 mm/s regardless of the stimulus direction. The directional sensitivity curves plotted on the basis of threshold velocities revealed that the preferential directions of the GIs were the ipsilateral-side in GI 8-1, the ipsilateral-front and contralateral-rear in GI 9-1, the ipsilateral-rear in GI 9-2 and the ipsilateral-front in GI 9-3, designated with respect to the side of the ventral nerve cord containing the axons. Although the GIs in nymphs occasionally showed higher threshold velocities and larger response magnitudes, the directional sensitivities, i.e., the preferred directions, of the GIs were basically the same with those of adults.  相似文献   

3.
One of a pair of cerci was ablated in the first-, fourth- and last-instar nymphs of the cricket, Gryllus bimaculatus. The insects were then reared until the final molt, after which the intensity-response (I-R) relationships for four giant interneurons (GIs) 8-1, 9-1, 9-2 and 9-3 with regard to a controlled air current stimulus were measured. In order to examine the functional changes during postembryonic development and the differences in the physiological plasticity of GIs between nymphs and adults, the obtained I-R curves for each GI were compared with those measured in intact and unilaterally cercus-ablated adult crickets. Each GI showed a distinctive change in response magnitudes after the long-term unilateral cercal ablation. In most cases, the I-R curves for each GI in the crickets ablated from nymphal periods were different from those in the adult crickets mentioned above. Moreover, the pattern of change in response magnitude was different from GI to GI. In contrast to these observations, it was reported that some important characteristics of the wind-evoked escape behavior such as relative occurrence and escape direction in unilaterally cercus-ablated crickets investigated after a long-term rearing were almost identical with those in intact crickets. Therefore, the results obtained in the present study suggest that functional changes occur not only in GIs but also in many other neural elements in the escape-eliciting system in order to maintain the features of wind-evoked escape behavior.  相似文献   

4.
The wind-evoked escape behavior of the cricket Gryllodes sigillatus was investigated using an air puff stimulus. A high velocity air puff elicited the escape behavior in many crickets. The crickets tended to escape away from the stimulus source, but the direction was not accurately oriented 180 degrees from the stimulus. After bilateral cercal ablation, only a few crickets showed wind-evoked escape behavior, and their response rates did not increase even 19 days after ablation. Therefore, information on air motion detected by cercal filiform hairs is essential for triggering wind-evoked behavior. After unilateral cercal ablation, the 81.3% response rate of intact crickets decreased to 16.5%, that is, it decreased to almost 20% that of intact crickets. One week after unilateral cercal ablation, the response rate recovered to more than 60% that of intact crickets. However, the accuracy rate of the escape direction of G. sigillatus showed no change even immediately after the unilateral cercal ablation. Therefore, both cerci are not necessarily required to determine the escape direction. The behavioral characteristics of wind-evoked escape of G. sigillatus are compared with those of another species of cricket, Gryllus bimaculatus. The two species of cricket employ different strategies for wind-evoked escape.  相似文献   

5.
The effects of rearing conditions on the functional recovery of wind-sensitive giant interneurons (GIs) after unilateral cercal ablation were investigated in the cricket, Gryllus bimaculatus. Crickets were reared in a glass vials to prohibit free walking for 14 days after unilateral cercal ablation ("14-day vial" crickets). Other crickets were reared in an apparatus called a "walking inducer" (WI) to increase the walking distance during the same 14-day period ("14-day WI" crickets). In these crickets, the response properties of GIs 8-1, 9-1, 9-2, and 9-3 to air currents from various directions were investigated. From the intensity-response curves obtained, directionality curves expressed in terms of threshold velocity and response magnitude were made independently. To understand changes in the functional recovery of GIs more thoroughly, the directional characteristics of GIs in crickets 1 day after unilateral cercal ablation ("1-day free" crickets) were also compared. Between the 1-day free and 14-day vial crickets, all the GIs showed differences in both threshold velocity and response magnitude for some stimulus directions. Between the 14-day vial and 14-day WI crickets, differences in the threshold velocities of GIs 9-1, 9-2, and 9-3, and in the response magnitudes of GIs 8-1, 9-1, and 9-3 were detected. Because the rearing condition after unilateral cercal ablation largely affects the compensatory recovery in some parameters of wind-evoked escape behavior, such as relative occurrence and escape direction, we discuss the functional differences in GIs revealed here in relation to the roles of GIs in the neural system that controls escape behavior.  相似文献   

6.
Unlike the situation in most cockroach and cricket species studied so far, the wind-sensitive cerci of the cave cricket Troglophilus neglectus Krauss (Rhaphidophoridae, Orthoptera) are not oriented parallel to the body axis but perpendicular to it. The effects of this difference on the morphology, and directional sensitivity of cercal giant interneurons (GIs), were investigated. In order to test the hypothesis that the 90 degrees change in cercal orientation causes a corresponding shift in directional sensitivity of GIs, their responses in both the horizontal and vertical planes were tested. One ventral and four dorsal GIs (corresponding to GIs 9-1a and 9-2a, 9-3a, 10-2a, 10-3a of gryllid crickets) were identified. The ventral GI 9-1a of Troglophilus differed somewhat from its cricket homologue in its dendritic arborisation and its directional sensitivity in the horizontal plane. The morphology and horizontal directionality of the dorsal GIs closely resembled that of their counterparts in gryllids. In the vertical plane, the directionality of all GIs tested was similar. They were all excited mainly by wind puffs from the axon-ipsilateral quadrant. The results suggest that directional sensitivity to air currents in the horizontal plane is maintained despite the altered orientation of the cerci. This is presumably due to compensatory modifications in the directional pReferences of the filiform hairs.  相似文献   

7.
Yono O  Shimozawa T 《Bio Systems》2008,93(3):218-225
One prominent stimulus to evoke an escape response in crickets is the detection of air movement, such as would result from an attacking predator. Wind is detected by the cercal sensory system that consists of hundreds of sensory cells at the base of filiform hairs. These sensory cells relay information to about a dozen cercal giant and non-giant interneurons. The response of cercal sensory cells depends both, on the intensity and the direction of the wind. Spike trains of cercal giant interneurons then convey the information about wind direction and intensity to the central nervous system. Extracellular recording of multiple cercal giant interneurons shows that certain interneuron pairs fire synchronously if a wind comes from a particular direction. We demonstrate here that directional tuning curves of synchronously firing pairs of interneurons are sharper than those of single interneurons. Moreover, the sum total of all synchronously firing pairs eventually covers all wind directions. The sharpness of the tuning curves in synchronously firing pairs results from excitatory and inhibitory input from the cercal sensory neurons. Our results suggest, that synchronous firing of specific pairs of cercal giant interneurons encodes the wind direction. This was further supported by behavioral analyses.  相似文献   

8.
Summary Cercal systems of seven insect species (cricketMelanogryllus desertus, mole cricketGryllotalpa gryllotalpa, katydidsPholidoptera pustulipes andTettigonia viridissima, cockroachesPeriplaneta americana andBlatta orientalis, and locustLocusta migratoria) were examined for direction-sensitive giant interneurons (GIs) that are excited by cercal receptors but have directional preferences independent of cercus position. Such GIs are known for the cricketsAcheta domesticus andGryllus bimaculatus. Directional sensitivity diagrams (DSDs) of GIs were obtained by recording and analysing the electrical responses of abdominal connectives to sound stimuli from various directions. For each animal DSDs were plotted in the form of polar graphs for two or three positions of the stimulated cercus so that the effect of cercus position on the orientation of the DSD could be evaluated.All insects studied had GIs whose DSDs for fixed cercus positions were similar in appearance to the DSDs described for GIs of the cricketsAcheta domesticus andGryllus bimaculatus. Most of these DSDs were shaped like a figure 8 (when airflow is used as the stimulus instead of sound, each DSD has only one lobe). However, not all GIs demonstrated a constant directional preference. GIs with constant directionality were found only inMelanogryllus desertus, Pholidoptera pustulipes, Tettigonia viridissima andLocusta migratoria. In these insects DSDs from one GI plotted for different cercus positions had approximately the same orientation (Figs. 4–7). In contrast, GIs inGryllotalpa gryllotalpa, Periplaneta americana andBlatta orientalis had DSDs whose orientation changed in accordance with a change in position of the stimulated cercus (Figs. 8–10).Thus, direction-sensitive GIs investigated here can be divided into two types: (1) GIs with constant directionality (whose DSDs are fixed to the body, and (2) GIs with variable directionality (whose DSDs are fixed to the cerci). To date, in each species only GIs of the same type have been encountered. This may be an indication that cercal systems can be divided into two categories according to how they process information. However, since we have not tested all GIs in each species, we cannot rule out the possibility that a species might have both types of GIs.Abbreviations DSD directional sensitivity diagram - GI giant interneuron - TAG terminal abdominal ganglion  相似文献   

9.
The cercus of the first instar cockroach, Periplaneta americana, bears two filiform hairs, lateral (L) and medial (M), each of which is innervated by a single sensory neuron. These project into the terminal ganglion of the CNS where they make synaptic connections with a number of ascending interneurons. We have discovered mutant animals that have more hairs on the cercus; the most typical phenotype, called "Space Invader" (SI), has an extra filiform hair in a proximo-lateral position on one of the cerci. The afferent neuron of this supernumerary hair (SIN) "invades the space" occupied by L in the CNS and makes similar synaptic connections to giant interneurons (GIs). SIN and L compete for these synaptic targets: the size of the L EPSP in a target interneuron GI3 is significantly reduced in the presence of SIN. Morphometric analysis of the L afferent in the presence or absence of SIN shows no anatomical concomitant of competition. Ablation of L afferent allows SIN to increase the size of its synaptic input to GI3. Less frequently in the mutant population, we find animals with a supernumerary medical (SuM) sensillum. Its afferent projects to the same neuropilar region as the M afferent, makes the same set of synaptic connections to GIs, and competes with M for these synaptic targets. The study of these competitive interactions between identified afferents and identified target interneurons reveals some of the dynamic processes that go on in normal development to shape the nervous system.  相似文献   

10.
Crickets respond to air currents with quick avoidance behavior. The terminal abdominal ganglion (TAG) has a neuronal circuit for a wind-detection system to elicit this behavior. We investigated neuronal transmission from cercal sensory afferent neurons to ascending giant interneurons (GIs). Pharmacological treatment with 500 muM acetylcholine (ACh) increased neuronal activities of ascending interneurons with cell bodies located in the TAG. The effects of ACh antagonists on the activities of identified GIs were examined. The muscarinic ACh antagonist atropine at 3-mM concentration had no obvious effect on the activities of GIs 10-3, 10-2, or 9-3. On the other hand, a 3-mM concentration of the nicotinic ACh antagonist mecamylamine decreased spike firing of these interneurons. Immunohistochemistry using a polyclonal anti-conjugated acetylcholine antibody revealed the distribution of cholinergic neurons in the TAG. The cercal sensory afferent neurons running through the cercal nerve root showed cholinergic immunoreactivity, and the cholinergic immunoreactive region in the neuropil overlapped with the terminal arborizations of the cercal sensory afferent neurons. Cell bodies in the median region of the TAG also showed cholinergic immunoreactivity. This indicates that not only sensory afferent neurons but also other neurons that have cell bodies in the TAG could use ACh as a neurotransmitter.  相似文献   

11.
The first-instar cockroach, Periplaneta americana, detects air movements using four filiform hair sensilla, which make synaptic connections to seven pairs of giant interneurons (GIs) in the terminal abdominal ganglion. The directional sensitivities of some of the GIs, predicted from their patterns of monosynaptic inputs, may not be the same as in the second instar or adult. Intracellular recordings were made to determine the contribution of polysynaptic inputs to the receptive fields of first-instar GIs. The ventral GI1, and the dorsal GI5, GI6, and GI7 were all found to have indirect synaptic inputs from filiform afferents. The indirect inputs were excitatory to GI1, GI5, and GI7, and inhibitory to GI6 and GI7. The indirect excitatory input to GI1 was predicted to alter qualitatively its receptive field, allowing it to respond to wind from the side of the animal, as in the adult. Inhibition was predicted to sharpen the receptive fields of GI6 and GI7. The inhibitory postsynaptic potentials reversed 6–8 mV below resting potential and were blocked by picrotoxin, indicating that they are GABAergic. Indirect excitation also altered the predicted receptive field of GI7, one of the inputs being an unusual “off-response” to movement of a filiform hair in its inhibitory direction. Accepted: 19 June 1998  相似文献   

12.
Neural regeneration in the escape circuit of the first-instar cockroach is described using behavioral analysis, electrophysiology, intracellular staining, and electron microscopy. Each of the two filiform hairs on each of the animal's cerci is innervated by a single sensory neuron, which specifically synapses with a set of giant interneurons (GIs) in the terminal ganglion. These trigger a directed escape run. Severing the sensory axons causes them to degenerate and perturbs escape behavior, which is restored to near normal after 4–6 days. Within this time, afferents regenerate and reestablish arborizations in the terminal ganglion. In most cases, regenerating afferents enter the cercal glomerulus and re-form most of the specific monosynaptic connections they acquired during embryogenesis, although their morphology deviates markedly from normal; these animals reestablish near normal escape behavior. In a few cases, regenerating afferents remain within the cercus or bypass the cercal glomerulus, and thereby fail to re-form synapses with GIs; these animals continue to exhibit perturbed escape behavior. We conclude that in most cases, specific synapses are reestablished and appropriate escape behavior is restored. This regeneration system therefore provides a tractable model for the establishment of synaptic specificity in a simple neuronal circuit. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 439–458, 1997  相似文献   

13.
Summary Direct evidence for monosynaptic connections between filiform hair sensory axons and giant interneurons (GIs) in the first instar cockroach, Periplaneta americana, was obtained using intracellular recording and HRP injection followed by electron microscopy. GIs 1–6 all receive monosynaptic input from at least one filiform afferent axon. GI1, GI2 and GI5 receive input only from the medial (M) axon, while GI3, GI4 and GI6 receive input from both M and lateral (L) axons. The dendrites of GI3 and GI6 which are contralateral to the cell bodies receive input from both axons whereas the smaller ipsilateral dendritic fields have synapses only from the L axon. GI5 has M axon input only onto its contralateral dendrites. In 50% of preparations GI7 receives weak input from the ipsilateral L axon. There is no obvious relationship between the morphology of the giant interneurons and the pattern of input they receive from the filiform afferents.Abbreviations GI giant interneuron - HRP horseradish peroxidase - L lateral axon - M medial axon  相似文献   

14.
1.  The ecdysial growth of cercal filiform hairs was investigated in the cricketGryllus bimaculatus. The length of hairs varied from 40 to 500 m in the 1st, from 40 to 650 m in the 3rd and from 30 to 800 m in the 5th instar nymphs (Fig. 1). Hemimetabolous development causes both hair growth and the appearance of new hairs at each ecdysis (Figs. 2, 3). The newly acquired hairs were shorter than 200 m in every case (Fig. 4).
2.  Velocity thresholds of cercal sensory interneurons (CSIs) to sinusoidal air-currents were measured in 3rd instar nymphs (Fig. 5 A, B, C). CSIs 8-1 (medial giant interneuron: MGI) and 9-1 (lateral giant interneuron: LGI) showed threshold curves of acceleration sensitivity similar to those in adults. The thresholds for CSIs 8-1 and 9-1 were on the average higher in nymphs than in adults. The threshold curves for the two velocity-sensitive CSIs 10-2 and 10-3 were similar for nymphs and adults.
3.  Velocity thresholds of cercal filiform sensilla were measured in 3rd instar nymphs (Fig. 6). In spite of the small size of nymphal hairs, the most sensitive ones showed the same sensitivity as did the long 1000 m hairs of the adult.
4.  The filiform hairs in 3rd instar nymphs were supported by a weaker spring than in adults (Fig. 7). Relative stiffness was about 50% of that in the long hairs in adults, but not much different than that in the short hairs.
5.  Based on a theoretical estimation of hair motion, the threshold angle of a filiform sensillum in the 3rd instar nymph was calculated (Fig. 9). Threshold angles of the long sensilla seemed to be unchanged throughout hemimetabolous development.
This paper is dedicated to the memory of the late professor Hiroshi Ikeda, Biological Institute, Faculty of General Education, Ehime University, Matsuyama, Japan  相似文献   

15.
Interneurons in the cercal sensory system of crickets respond in a cell-specific manner if the cercal hair sensilla are stimulated by air-particle oscillations at frequencies below about 2000 Hz. We investigated the filter properties of several of these interneurons, and tested the effect of stimulus intensity (typically 0.3–50 mm s−1 peak-to-peak air-particle velocity) on the frequency response in the range 5–600 Hz. We focus on three interneurons (the lateral and medial giant interneurons and interneuron 9-3a) of Acheta domesticus which are characterized by a relatively high sensitivity above ca. 50–200 Hz. The responses of the medial giant interneuron usually increase monotonically with frequency and intensity. Interneuron 9-3a and the lateral giant interneuron exhibit saturation or response decrement at high frequencies and intensities. The lateral giant interneuron has an additional peak of sensitivity below about 40 Hz. Small individual variations in the relative locations of the two response areas of this interneuron within the frequency-intensity field are responsible for a large variability obtained if frequency-response curves are determined for particular intensities. Stimulus frequency does not affect the principal directional preferences of the three interneurons. Nevertheless, if tested individually, the lateral giant interneuron and interneuron 9-3a exhibit small changes of directional tuning. Accepted: 12 November 1997  相似文献   

16.
The deflection sensitivities of cercal filiform hairs of the cricket, Gryllus bimaculatus, were determined by direct measurement. The tangential velocity of deflecting hair shafts in response to stimulus air motion was measured in situ by a laser-Doppler velocimeter with surface scattering of the shaft. The velocity of the stimulus air motion in a small wind tunnel was calibrated by the same velocimeter with smoke from a joss-stick. The mobility of the hair was obtained from former measurements with reference to the latter calibration of the single apparatus. A Gaussian white noise signal was employed as a stimulus waveform, and the stimulus-response transfer function was calculated through a cross-correlation method, which provides greater precision and wider frequency for a longer period of measurement. The mobility of hair was expressed in deflection amplitudes and phase shifts in reference to the velocity sinusoid of a stimulus at various frequencies. The measurements established the following conclusions. The wind receptor hairs comprise an array of mechanical band-pass filters whose best frequencies are inversely proportional to the length. The motion dynamics of the wind-receptor hairs have strong damping. Accepted: 24 February 1998  相似文献   

17.
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.  相似文献   

18.
Summary Mutant first instar cockroaches (Periplaneta americana) with supernumerary filiform hair sensilla on their cerci were used to study the effects of cell body position on axonal morphology and synaptic connections. The wild-type cercus has two hairs, one lateral (L) and the other medial (M), each with an underlying sensory neuron. Silver-intensified cobalt fills show that the supernumerary lateral neuron (SIN) in the mutant has the same shape of arborization as L, and electrophysiological recording shows that it forms synaptic connections with the same subset of giant interneurons (GIs) as L in the terminal ganglion: GI3 and GI6. The supernumerary medial neuron (SuM) has the same axonal morphology as M and synapses with the same GIs as does M: ipsilateral GIs 1 and 2 and contralateral GIs 1, 2, 3, 5 and 6. In 0.1% of approximately 8000 animals screened, a supernumerary hair arose on the cereal midline (C hair). The C neuron sends its axon to the CNS in the same branch of the cereal nerve as the L and SIN, and has a similar arborization. However, the C neuron forms synapses with the same GIs as do M and SuM. Electron microscopy of horseradish peroxidase-injected neurons was used to confirm that the C afferent forms a monosynaptic connection to GI2. It was concluded that the position of the sensory neuron cell body does control its axonal morphology and synaptic connectivity, but that these characteristics are produced by independent mechanisms.Abbreviations GI giant interneuron - L lateral - M medial - SI Space Invader - SuM supernumerary medial - C cereal midline  相似文献   

19.
Summary Campaniform sensilla associated with filiform hairs comprise an important receptor type of the multimodal sensory system of the cerci of crickets and cockroaches. Their axon projections were investigated using iontophoretic cobalt injection into single sensilla.In crickets (Gryllus bimaculatus, Acheta domestica), six different types of cereal campaniform sensilla projections can be distinguished on the basis of their axonal arborizations and terminations. Typically, a proportion of cereal campaniform sensilla, associated with long filiform hairs, give rise to axons that ascend as through fibres from the terminal ganglion to reach the sixth abdominal ganglion. Cereal campaniform sensilla associated with clavate hairs have projections restricted to the terminal ganglion alone.Whereas in crickets axons of cercal campaniform sensilla invade only certain segmental neuropils in the terminal ganglion, in cockroaches (Periplaneta americana) axons from cercal campaniform sensilla branch in every segmental neuropil. A proportion of cereal campaniform sensilla in this species also gives rise to through fibres to the fifth abdominal ganglion.We discuss morphological and functional interpretations of differences between crickets and cockroaches and consider the significance of this type of receptor in the context of previous studies of the cercal system.  相似文献   

20.
  1. The cerci of the cockroach Periplaneta americana bear filiform hair mechanoreceptors that are arranged in segmentally repeated rows and longitudinal columns. The monosynaptic connections between receptors of the same column or row and the 3 largest giant interneurons (GIs) were compared using the oil-gap single fibre technique.
  2. For many columns, the synaptic efficacy of the afferents decreased gradually from the base to the tip of the cercus, but columns with an inverted gradient or without any gradient were also observed. On the ipsilateral side (relative to the GI axon), the inverted gradients were exclusively found for columns with short proximal hairs. For one column (d) and GI3, the ipsilateral and contralateral gradients were opposite.
  3. Monosynaptic EPSPs evoked by stimulating different receptors of the same segment (segment 3) were of very different amplitudes, which partially account for the directional sensitivity of the GIs. Differences in the location, shape and size of the afferent terminals were not sufficient to explain these differences in connection strength.
  4. No correlation was found between the size of the EPSPs produced by a sensory neuron and the length of its associated hair.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号