首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of NF-kappaB in the presence of tumor necrosis factor-alpha (TNF) is supposed to be a promising cancer therapeutic approach, since it disrupts the protective mechanism of NF-kappaB activated by TNF. To test this approach in gliomas, we introduced a superrepressor of NF-kappaB, an N-terminal deleted form of inhibitor kappa B alpha (IkappaBdN) gene, to human glioma cells (U251 and U-373MG) via adenoviral vector (Adv) in the presence of TNF. U-373MG cells were refractory to TNF-induced apoptosis even when they were transduced with the IkappaBdN gene. On the other hand, transduction of IkappaBdN drastically augmented caspase-8-mediated apoptosis in U-373MG cells. Similar results were obtained in U251 cells. Cotransduction of IkappaBdN and caspase-8 induced cleavage of PARP. Taken together, Adv-mediated transfer of IkappaBdN plus caspase-8 may be a promising therapeutic approach to treat gliomas.  相似文献   

2.
Human glioma cell line U-373 MG expresses CMP-NeuAc : Galbeta1,3GlcNAc alpha2,3-sialyltransferase [EC No. 2.4.99.6] (alpha2,3ST), UDP-GlcNAc : beta-d-mannoside beta1,6-N-acetylglucosaminyltransferase V [EC 2.4.1.155] (GnT-V) and UDP-GlcNAc3: beta-d-mannoside beta1,4-N-acetylglucosaminyltransferase III [EC 2.4.1.144] (GnT-III) but not CMP-NeuAc : Galbeta1,4GlcNAc alpha2,6-sialyltransferase [EC 2.4.99.1] (alpha2,6ST) under normal culture conditions. We have previously shown that transfection of the alpha2,6ST gene into U-373 cells replaced alpha2,3-linked sialic acids with alpha2,6 sialic acids, resulting in a marked inhibition of glioma cell invasivity and a significant reduction in adhesivity. We now show that U-373 cells, which are typically highly resistant to cell death induced by chemotherapeutic agents (< 10% death in 18 h), become more sensitive to apoptosis following overexpression of these four glycoprotein glycosyltransferases. U-373 cell viability showed a three-fold decrease (from 20 to 60% cell death) following treatment with staurosporine, C2-ceramide or etoposide, when either alpha2,6ST and GnT-V genes were stably overexpressed. Even glycosyltransferases typically raised in cancer cells, such as alpha2,3ST and GnT-III, were able to decrease viability two-fold (from 20 to 40% cell death) following stable overexpression. The increased susceptibility of glycosyltransferase-transfected U-373 cells to pro-apoptotic drugs was associated with increased ceramide levels in Rafts, increased caspase-3 activity and increased DNA fragmentation. In contrast, the same glycosyltransferase overexpression protected U-373 cells against a different class of apoptotic drugs, namely the phosphatidylinositol 3-kinase inhibitor LY294002. Thus altered surface protein glycosylation of a human glioblastoma cell line can lead to lowered resistance to chemotherapeutic agents.  相似文献   

3.
Human cytomegalovirus (HCMV) has many strategies to survive the attack of the host. HCMV infection of host cells induces cellular activation and disturbance of the cell cycle. It is possible that HCMV modulates the behavior of certain cancer cells that are susceptible to HCMV infection. This study was performed to identify the possible mechanism of resistance to apoptotic stimuli in some cancer cell lines by HCMV infection. HCMV-infected cancer cells showed resistance to apoptosis induced by the topoisomerase II inhibitor etoposide. UMG1-2, which constitutively expresses HCMV immediate-early protein-1 (IE1), had resistance to apoptosis induced by etoposide as compared with the parental cell line U373MG. Measurement of caspases activity with fluorogenic substrates in etoposide-treated U373MG and UMG1-2 cells and the direct activation of caspase-3 with peptides containing arginine-glycine-aspartate in U373MG and UMG1-2 cells revealed that the inhibition level of apoptosis by HCMV IE1 would be upstream of caspase-3 in the caspase cascade pathway. Cellular expression of Cdk2 was increased in UMG1- 2 after etoposide treatment while the expression of E2F-1 in UMG1-2 was decreased as compared with that in U373MG. The Cdk2 inhibitor, roscovitine, decreased the resistance to apoptosis on etoposide-treated UMG1-2. These results suggest that aberrant HCMV infection confers resistance to anticancer drugs on some cancer cells and protects cells from apoptosis, possibly due to the deregulation of cyclin-dependent kinase by HCMV immediate-early protein.  相似文献   

4.
5.
Phospholipase C-γl (PLC-γl) expression is associated with cellular transformation. Notably, PLC-gamma is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-γl overexpression. We found that PLC-γl-transformed cells, but not vectortransformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-γl-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-γl-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-γl is highly up-regulated.  相似文献   

6.
7.
8.
Tumor necrosis factor receptor-associated factor 6 (TRAF6), which plays an important role in inflammation and immune response, is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway. Recent studies have shown that TRAF6 played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, up to now, the biologic role of TRAF6 in glioma has still remained unknown. To address the expression of TRAF6 in glioma cells, four glioma cell lines (U251, U-87MG, LN-18, and U373) and a non-cancerous human glial cell line SVG p12 were used to explore the protein expression of TRAF6 by Western blot. Our results indicated that TRAF6 expression was upregulated in human glioma cell lines, especially in metastatic cell lines. To investigate the role of TRAF6 in cell proliferation, apoptosis, invasion, and migration of glioma, we generated human glioma U-87MG cell lines in which TRAF6 was either overexpressed or depleted. Subsequently, the effects of TRAF6 on cell viability, cell cycle distribution, apoptosis, invasion, and migration in U-87MG cells were determined with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry analysis, transwell invasion assay, and wound-healing assay. The results showed that knockdown of TRAF6 could decrease cell viability, suppress cell proliferation, invasion and migration, and promote cell apoptosis, whereas overexpression of TRAF6 displayed the opposite effects. In addition, the effects of TRAF6 on the expression of phosphor-NF-κB (p-p65), cyclin D1, caspase 3, and MMP-9 were also probed. Knockdown of TRAF6 could lower the expression of p-p65, cyclin D1, and MMP-9, and raise the expression of caspase 3. All these results suggested that TRAF6 might be involved in the potentiation of growth, proliferation, invasion, and migration of U-87MG cell, as well as inhibition of apoptosis of U-87MG cell by abrogating activation of NF-κB.  相似文献   

9.
TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells   总被引:10,自引:0,他引:10  
Transforming growth factor-beta 1 (TGF-beta 1) has important roles in lung fibrosis and the potential to induce apoptosis in several types of cells. We previously demonstrated that apoptosis of lung epithelial cells induced by Fas ligation may be involved in the development of pulmonary fibrosis. In this study, we show that TGF-beta1 induces apoptosis of primary cultured bronchiolar epithelial cells via caspase-3 activation and down-regulation of cyclin-dependent kinase inhibitor p21. Concentrations of TGF-beta 1 that were not sufficient to induce apoptosis alone could enhance agonistic anti-Fas Ab or rFas ligand-mediated apoptosis of cultured bronchiolar epithelial cells. Soluble Fas ligand in the bronchoalveolar lavage fluid (BALF) from patients with idiopathic pulmonary fibrosis (IPF) also induced apoptosis of cultured bronchiolar epithelial cells that was significantly attenuated by anti-TGF-beta Ab. Otherwise, BALF from patients with hypersensitivity pneumonitis (HP) could not induce apoptosis on bronchiolar epithelial cells, despite its comparable amounts of soluble Fas ligand. The concentrations of TGF-beta 1 in BALF from patients with IPF were significantly higher compared with those in BALF from patients with HP or controls. Furthermore, coincubation with the low concentration of TGF-beta 1 and HP BALF created proapoptotic effects comparable with the IPF BALF. In vivo, the administration of TGF-beta 1 could enhance Fas-mediated epithelial cell apoptosis and lung injury via caspase-3 activation in mice. Our results demonstrate a novel role of TGF-beta 1 in the pathophysiology of pulmonary fibrosis as an enhancer of Fas-mediated apoptosis of lung epithelial cells.  相似文献   

10.
We have previously shown that the absence of Fas/Fas ligand significantly reduced tissue damage and intestinal epithelial cell (IEC) apoptosis in an in vivo model of T cell-mediated enteropathy. This enteropathy was more severe in IL-10-deficient mice, and this was associated with increased serum levels of IFN-gamma and TNF-alpha and an increase in Fas expression on IECs. In this study, we investigated the potential of IL-10 to directly influence Fas expression and Fas-induced IEC apoptosis. Mouse intestinal epithelial cell lines MODE-K and IEC4.1 were cultured with IFN-gamma, TNF-alpha, or anti-Fas monoclonal antibody (mAb) in the presence or absence of IL-10. Fas expression and apoptosis were determined by FACScan analysis of phycoerythrin-anti-Fas mAb staining and annexin V staining, respectively. Treatment with a combination of IFN-gamma and TNF-alpha induced significant apoptosis. Anti-Fas mAb alone did not induce much apoptosis unless cells were pretreated with IFN-gamma and TNF-alpha. These IECs constitutively expressed low levels of Fas, which significantly increased by preincubation of the cells with IFN-gamma and TNF-alpha. Treatment with cytokine or cytokine plus anti-Fas mAb increased apoptosis, which correlated with a decreased Fas-associated death domain IL-1-converting enzyme-like inhibitory protein (FLIP) level, increased caspase-8 activity, and subsequently increased caspase-3 activity. IL-10 diminished both cytokine- and anti-Fas mAb-induced apoptosis, and this was correlated with decreased cytokine-induced Fas expression, increased FLIP, and decreased caspase-8 and caspase-3 activity. In conclusion, IL-10 modulated cytokine induction of Fas expression on IEC cell lines and regulated IEC susceptibility to TNF-alpha, IFN-gamma, and Fas-mediated apoptosis. These findings suggest that IL-10 directly modulates IEC responses to T cell-mediated apoptotic signals.  相似文献   

11.
An increasing amount of evidence indicates that the disialoganglioside GD3 is involved in apoptosis in many cell lines. Our previous studies demonstrated that endogenous GD3 expression induced apoptosis in U-1242 MG glioma cells transfected with the GD3 synthase gene (U1242MG-GD3 cells). In this paper, we present further investigations on the molecular mechanisms of GD3-induced apoptosis in this cell line. We found that endogenously synthesized GD3 localizes to the caveolae of this cell line, where it promotes the localization of death receptor 5 (DR5), tumor necrosis factor receptor-1 (TNF-R1), and Fas (Apo-1) to the caveolae. In addition, caspase-8 was translocated to the caveolar fraction and cleaved; the cleaved proteins were then re-located into the high density fractions. However, GD3 had no effect on the distribution of the adapter protein Fas-associated death domain (FADD). We conclude that GD3 functions as a regulatory molecule early in the extrinsic apoptosis pathway.O. M. Omran, H. E. Saqr––Both authors contributed equally to this work.  相似文献   

12.
Although Fas (APO-1/CD95) is well known as a death receptor, its stimulation occasionally fails to induce apoptosis in malignant cells. On the contrary, Fas is reported to advance the cell cycle in cancer cells. Therefore, we investigated roles of Fas in cell growth and apoptosis using human lung cancer cell lines. Fas was localized in the cytoplasm in exponentially growing cells, whereas only confluent cells expressed Fas on the cell membrane. A stimulation of confluent cells by either of EGF, IGF-I or VEGF induced once a decrease in Fas expression level and its sequential recovery. Fas expression levels in confluent cells were negatively correlated with cell doubling times (r=0.757, p=0.0088). Fas remained on the cell membrane of IgM-treated cells even after the growth factor stimulation, leading to apoptosis with abnormal mitosis, whereas the same stimulation induced Fas internalization in IgG(1)-treated cells. From these results, we suggest that Fas remaining on the cell membrane amplifies to induce apoptosis. Conversely, Fas internalization may enable cancer cells to escape from apoptosis. Our results suggest that growth factor may contribute to the resistance of cancer cells to Fas-mediated apoptosis in an autocrine or paracrine fashion.  相似文献   

13.
n-3 polyunsaturated fatty acids exert growth-inhibitory and pro-apoptotic effects in colon cancer cells. We hypothesized that the anti-apoptotic glucose related protein of 78kDa (GRP78), originally described as a component of the unfolded protein response in endoplasmic reticulum (ER), could be a molecular target for docosahexaenoic acid (DHA) in these cells. GRP78 total and surface overexpression was previously associated with a poor prognosis in several cancers, whereas its down-regulation with decreased cancer growth in animal models. DHA treatment induced apoptosis in three colon cancer cell lines (HT-29, HCT116 and SW480), and inhibited their total and surface GRP78 expression. The cell ability to undergo DHA-induced apoptosis was inversely related to their level of GRP78 expression. The transfection of the low GRP78-expressing SW480 cells with GRP78-GFP cDNA significantly induced cell growth and inhibited the DHA-driven apoptosis, thus supporting the essential role of GRP78 in DHA pro-apoptotic effect. We suggest that pERK1/2 could be the first upstream target for DHA, and demonstrate that, downstream of GRP78, DHA may exert its proapoptotic role by augmenting the expression of the ER resident factors ERdj5 and inhibiting the phosphorylation of PKR-like ER kinase (PERK), known to be both physically associated with GRP78, and by activating caspase-4. Overall, the regulation of cellular GRP78 expression and location is suggested as a possible route through which DHA can exert pro-apoptotic and antitumoral effects in colon cancer cells.  相似文献   

14.
Yan XB  Yang DS  Gao X  Feng J  Shi ZL  Ye Z 《Cell biology international》2007,31(10):1136-1143
Many researchers have reported that proteasome inhibitors could induce apoptosis in a variety of cancer cells, such as breast cancer cell, lung cancer cell, and lymphoma cell. However, the effect of proteasome inhibitors on osteocsarcoma cells and the mechanisms are seldom studied. In this study, we found proteasome inhibitor MG132 was an effective inducer of apoptosis in human osteosarcoma MG-63 cells. On normal human diploid fibroblast cells, MG132 did not show any apoptosis-inducing effects. Apoptotic changes such as DNA fragment and apoptotic body were observed in MG132-treated cells and MG132 mostly caused MG-63 cell arrest at G(2)-M-phase by cell cycle analysis. Increased activation of caspase-8, accumulation of p27(Kip1), and an increased ratio of Bax:Bcl-2 were detected by RT-PCR and Western blot analysis. Activation of caspase-3 and caspase-9 were not observed. This suggests that the apoptosis induced by MG132 in MG63 cells is caspase-8 dependent, p27 and bcl-2 family related.  相似文献   

15.
16.
The ubiquitin-proteasome pathway plays a critical role in the degradation of several proteins involved in the cell cycle. Dysregulation of this pathway leads to inhibition of cellular proliferation and the induction of apoptosis. Ubiquitination and its downstream consequences have been investigated intensively as targets for the development of drugs for tumour therapy. Here we have investigated the mechanism of apoptosis induced by the proteasome inhibitors MG-132, lactacystin and calpain inhibitor I (ALLN), in the HEK 293 cell line and the ovarian cancer cell lines SKOV3 and OVCAR3. We have found strong caspase-3-like and caspase-6-like activation upon treatment of HEK 293 cells with MG-132. Using a tricistronic expression vector based on a tetracycline-responsive system we generated stable SKOV3 nd OVCAR3 cell lines with inducible expression of pro-caspase-3. Induction of pro-caspase-3 expression in normally growing cells does not induce apoptosis. However, in the presence of the proteasome inhibitors MG-132, lactacystin or ALLN we found that cells overexpressing pro-caspase-3 are rapidly targeted for apoptosis. Our results demonstrate that pro-caspase-3 can sensitise ovarian cancer cells to proteasome inhibitor-induced apoptosis, and a combination of these approaches might be exploited for therapy of ovarian and other cancers.  相似文献   

17.
Small cell lung cancer cell lines were resistant to FasL and TRAIL-induced apoptosis, which could be explained by an absence of Fas and TRAIL-R1 mRNA expression and a deficiency of surface TRAIL-R2 protein. In addition, caspase-8 expression was absent, whereas FADD, FLIP and caspases-3, -7, -9 and -10 could be detected. Analysis of SCLC tumors revealed reduced levels of Fas, TRAIL-R1 and caspase-8 mRNA compared to non-small cell lung cancer (NSCLC) tumors. Methylation-specific PCR demonstrated methylation of CpG islands of the Fas, TRAIL-R1 and caspase-8 genes in SCLC cell lines and tumor samples, whereas NSCLC samples were not methylated. Cotreatment of SCLC cells with the demethylating agent 5'-aza-2-deoxycytidine and IFNgamma partially restored Fas, TRAIL-R1 and caspase-8 expression and increased sensitivity to FasL and TRAIL-induced death. These results suggest that SCLC cells are highly resistant to apoptosis mediated by death receptors and that this resistance can be reduced by a combination of demethylation and treatment with IFNgamma.  相似文献   

18.
This study describes the molecular signaling involved in the different cell death modes of triple-negative breast cancer cells induced by hexadecylphosphocholine (HePC/miltefosine), a clinically relevant anticancer alkylphosphocholine. We found that the HePC treatment triggers cell-type-dependent apoptotic and non-apoptotic cell death processes. Moreover, the expression level of the apoptosis activator Fas, and Fas/Fas ligand signaling capacity are not attributing factors for the preference toward apoptosis. Using Fas siRNA and overexpression approaches we establish that Fas is not a pro-apoptotic factor but a contributor to cell protection in HePC-apoptosis-sensitive cells. The insight in the multi-modal anticancer capability of HePC in triple-negative breast cancer cells may facilitate the targeted design of therapeutic strategies against triple-negative breast cancers.  相似文献   

19.
Renal tubular cell apoptosis is a significant component of obstruction-induced renal injury, and it results in a progressive loss in renal parenchymal mass during renal obstruction. Although IL-18 is an important mediator of inflammatory renal disease and renal fibrosis, its role in obstruction-induced renal tubular cell apoptosis remains unclear. To study this, male C57BL6 wild-type mice and C57BL6 mice transgenic for human IL-18-binding protein (IL-18BP Tg) were subjected to renal obstruction vs. sham operation. The kidneys were harvested after 1 or 2 wk and analyzed for IL-18 production, apoptosis, caspase activity, and Fas/Fas Ligand (FasL) expression. HK-2 cells were similarly analyzed for apoptosis and proapoptotic signaling following 3 days of direct exposure to IL-18 vs. control media. Renal obstruction induced a significant increase in IL-18 production, renal tubular cell apoptosis, caspase activation, and FasL expression. IL-18 neutralization, on the other hand, significantly reduced obstruction-induced apoptosis, caspase-8 and caspase-3 activity, and FasL expression. In vitro experiments similarly demonstrate that IL-18 stimulation induces apoptosis, FasL expression, and increases active caspase-8 and caspase-3 expression in a dose-dependent fashion. siRNA knockdown of FasL gene expression, however, significantly reduced IL-18-induced apoptosis. This study reveals that IL-18 is a significant mediator of obstruction-induced tubular cell apoptosis, and it demonstrates that IL-18 stimulates proapoptotic signaling through a FasL-dependent mechanism.  相似文献   

20.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号