首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time course of expression of topoisomerase I, topoisomerase II, and simian virus 40 (SV40) large tumor (T) antigen was determined in whole-cell extracts of uninfected versus SV40-infected TC7 cells. After a minor increase, the level of topoisomerase I remained fairly constant throughout the time course in both uninfected and SV40-infected cells. In contrast, the level of topoisomerase II increased markedly in SV40-infected cells but not in uninfected cells following the appearance of SV40 T antigen.  相似文献   

2.
The infection of monkey kidney (CV-1) cells with simian virus 40 (SV40) stimulates the cells into successive rounds of DNA synthesis without an intervening mitosis, leading to the acquisition of a >G2 DNA content. To elucidate the role of small t antigen in cell cycle progression and in viral replication during infection, studies were performed using an SV40 mutant (dl888) that lacks the ability to produce small t. Initially dl888-infected cells move through the first S phase at roughly the same rate as wild-type infected cells. Upon reaching G2, however, the dl888-infected cells progressed to >G2 at a reduced rate relative to wild-type. The slower rate of entry into >G2 of dl888-infected cells is associated with a decrease in total pRb and an increase in the ratio of hypophosphorylated to hyperphosphorylated pRb. The expression of cyclin D1 and p27(kip1) were elevated in dl888-infected cells compared to wild-type-infected CV-1 cells. Taken together, these results indicate that small t antigen plays a role in stimulating entry into >G2 in SV40-infected CV-1 cells, possibly by affecting the regulation of key cell cycle proteins.  相似文献   

3.
Lytic infection of African green monkey kidney (CV-1) cells by simian virus 40 (SV40) is characterized by stimulation of DNA synthesis leading to bypass of mitosis and replication of cellular and viral DNA beyond a 4C DNA content. To define mechanisms underlying the absence of mitosis, the expression levels of upstream regulatory molecules of mitosis-promoting factor (MPF) were compared in parallel synchronized cultures of SV40-infected and uninfected CV-1 cells. The DNA replication/damage checkpoint kinase Chk1 was phosphorylated in both uninfected and SV40-infected cultures arrested at G(1)/S by mimosine, consistent with checkpoint activation. Following release of uninfected cultures from G(1)/S, Chk1 phosphorylation was lost even though Chk1 protein levels were retained. In contrast, G(1)/S-released SV40-infected cultures exhibited dephosphorylation of Chk1 in S phase, followed by an increase in Chk1 phosphorylation coinciding with entry of infected cells into >G(2). Inhibitors of Chk1, UCN-01 and caffeine, induced mitosis and abnormal nuclear condensation and increased the protein kinase activity of MPF in SV40-infected CV-1 cells. These results demonstrate that SV40 lytic infection triggers components of a DNA damage checkpoint pathway. In addition, chemical inhibition of Chk1 activity suggests that Chk1 contributes to the absence of mitosis during SV40 lytic infection.  相似文献   

4.
Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK- 52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted epidermal growth factor (EGF)-induced hyperplasia into hypertrophy. TGF beta did not affect EGF-induced increases in c-fos mRNA abundance or cyclin E protein abundance, but inhibited EGF-induced entry into S, G2, and M phases. EGF alone increased the amount of hyperphosphorylated (inactive) pRB; TGF beta blocked EGF-induced pRB phosphorylation, maintaining pRB in the active form. To determine the importance of active pRB in TGF beta-induced hypertrophy, NRK-52E cells were infected with SV40 large T antigen (which inactivates pRB and related proteins and p53), HPV16 E6 (which degrades p53), HPV16 E7 (which binds and inactivates pRB and related proteins), or both HPV16 E6 and E7. In SV40 large T antigen expressing clones, the magnitude of EGF + TGF beta-induced hypertrophy was inhibited and was inversely related to the magnitude of SV40 large T antigen expression. In the HPV16-infected cells, EGF + TGF beta-induced hypertrophy was inhibited in E7- and E6E7-expressing, but not E6- expressing cells. These results suggest a requirement for active pRB in the development of EGF + TGF beta-induced renal epithelial cell hypertrophy. We suggest a model of renal cell hypertrophy mediated by EGF-induced entry into the cell cycle with TGF beta-induced blockade at G1/S, the latter due to maintained activity of pRB or a related protein.  相似文献   

5.
Mouse macrophages transformed by a temperature-sensitive mutant (tsA640) of simian virus 40 (SV40) were examined by immunofluorescence microscopy for fibronectin expression and actin distribution. Resting cultures of tsA640 transformants incubated at a temperature nonpermissive for SV40 large T antigen (39.0 degrees C) exhibited phagocytic activity and did not exhibit cellular fibronectin and actin cables, like primary cultures of resident macrophages. When the resting cultures were sparsely seeded and shifted down to the permissive temperature of 33.0 degrees C, expression of large T antigen in the nucleus, expression of fibronectin in the cytoplasm, and cellular entry into S phase occurred in that temporal order, followed by actin cable formation, cellular proliferation, and diminishment of phagocytic activity. The expression of T antigen and fibronectin was sensitive to actinomycin D and cycloheximide. The expression of fibronectin was insensitive to inhibitors of DNA synthesis, whereas the expression of actin cables was sensitive. These results suggest that SV40 T antigen leads macrophages to express fibronectin and actin cables, as well as resumption of cell proliferation, and that entry into S phase is not required for fibronectin expression but may be required for actin cable formation.  相似文献   

6.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

7.
We examined the effects of large T antigen of simian virus 40 (SV40) on the proliferation phenotypes of temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts, which cease proliferating in the G1 phase of the cell cycle at a restrictive temperature (39.8 degrees C). Four ts mutants, each representing independent complementation groups, were transformed with the dl-884 mutant of SV40 which lacks the unique coding region for small t antigen. In the case of two ts mutants, their transformed derivatives did not cease proliferation at 39.8 degrees C. In the other two mutants, the transformed cells continued to enter the S phase but the cells became detached from the dishes thereafter, at 39.8 degrees C. The proliferation phenotypes of the dl-884-transformed cells at 39.8 degrees C were quite similar with those of the same mutants transformed with the wild-type SV40. These results indicate that large T antigen alone is sufficient to overcome the inhibition of cellular entry into S phase caused by four different ts defects and determines the proliferation phenotypes of the cells after entering the S phase at a restrictive temperature, and that small t antigen does not alter the cellular phenotypes determined by large T antigen.  相似文献   

8.
Four temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts, representing independent complementation groups, cease to proliferate predominantly with a 2n DNA content, at the restrictive temperature (39.8 degrees C) (temperature arrest) or at the permissive temperature (33.8 degrees C) at a confluent cell density (density arrest) (Ohno et al., 1984). We studied the temperature- or the density-arrested cells of these mutants infected with simian virus 40 (SV40) or its mutants affecting large T or small t antigen with respect to kinetics at 39.8 degrees C of entry into S phase and cellular proliferation. Three mutants, 3Y1tsD123, 3Y1tsF121 and 3Y1tsG125, expressed T antigen and entered S phase at 39.8 degrees C from both the arrested states after infection with either wild-type, tsA mutants, or a .54/.59 deletion mutant of SV40, whereas in the density-arrested 3Y1tsH203, expression of T antigen and entry into S phase were inefficient and ts. Following the WT-SV40 induced entry into S phase, the temperature-arrested 3Y1tsD123 detached from the substratum with no detectable increase in cell number, whereas the density-arrested ones completed a round of the cell cycle and then detached. 3Y1tsF121 and 3Y1tsG125 in the both arrested states proliferated through more than one generation. 3Y1tsF121 and 3Y1tsG125 in the density-arrested state infected with tsA mutants once proliferated and then ceased to increase in number as the percentage of T-antigen positive population decreased. These results suggest that wild-type and tsA-mutated large T antigens are able to overcome the cellular ts blocks of entry into S phase in the 3 ts mutants of 3Y1 cells in both the arrested states, and that small t antigen is not required to overcome the blocks. It is also suggested that cellular behaviors subsequent to S phase (viability, mitosis, and proliferation in the following generations) depend on cellular arrest states, on traits of cellular ts defects, and on the duration of large T antigen expression.  相似文献   

9.
Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-phase 3T3 cells, Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in B1 nuclei when G1 cells are fused with S-phase cells. However, when G1 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G1 phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. Our interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G0 leads to G1 leads to S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.  相似文献   

10.
Lin GY  Lamb RA 《Journal of virology》2000,74(19):9152-9166
Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G(1) to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G(2) or M phase. The levels of p53 and p21(CIP1) were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VDeltaC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein.  相似文献   

11.
BACKGROUND: Simian Virus 40 (SV40) infection of growth-arrested monkey kidney cells stimulates S phase entry and the continued synthesis of both viral and cellular DNA. Infected cells can attain total DNA contents as high as DNA Index, DI = 5.0-6.0 (10-12C), with host cell DNA representing 70-80% of the total. In this study, SV40-infected and uninfected control cells were compared to determine whether continued DNA replication beyond DI = 2.0 was associated with rebinding of the minichromosome maintenance (MCM) hexamer, the putative replicative helicase, to chromatin. METHOD: Laser scanning cytometry was used to measure the total expression per cell and the chromatin/matrix-association of two MCM subunits in relation to DNA content. RESULTS: MCM2 and MCM3 proteins that were associated with the chromatin/matrix fraction in G1 phase of both uninfected and SV40-infected cells were gradually released during progression through S phase. However, in SV40-infected cells that progressed beyond DI = 2.0, chromatin/matrix-associated MCM2 and MCM3 remained at the low levels observed at the end of S phase. Rereplication was not preceded by an obvious rebinding of MCM proteins to chromatin, as was observed in G1 phase. CONCLUSIONS: The rereplication of host cell DNA in the absence of the reassociation of MCM proteins with chromatin indicates that SV40 infection induces a novel mechanism of licensing cellular DNA replication.  相似文献   

12.
Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis.  相似文献   

13.
14.
The formation of oligomers of simian virus 40 (SV40) large T antigen in SV40-infected and -transformed monkey cells was analyzed by sucrose density gradient centrifugation. The overall distribution of total T antigen during lytic infection showed mainly low-molecular-weight forms (monomers and dimers) in the early phase (10 h postinfection) and an increase in the number of oligomers in the late phase of the lytic cycle (36 h postinfection), indicating an accumulation of these final products. In contrast, studying the conversion of newly synthesized T antigen into oligomers by appropriate pulse-chase radiolabeling of infected cells revealed that this processing decelerates considerably during the late phase of infection. This mechanism can be reaccelerated by blocking DNA replication with aphidicolin. Since none of these results could be obtained by using synchronized SV40-transformed monkey cells (COS-1), these observations are compatible with the idea that the process of T antigen oligomerization may be involved in viral, but not in cellular, DNA synthesis.  相似文献   

15.
Simian virus 40 (SV40) large tumor antigen (T antigen) exists in multiple molecular forms, some of which are separable by zone velocity sedimentation of soluble extracts from infected monkey cells. Three subclasses of this antigen from SV40-infected monkey cells have been separated and characterized: the 5S, 7S, and 14S forms. Newly synthesized T antigen occurs primarily in the 5S form. Chemical cross-linking provided evidence that the 14S form is primarily a tetramer, whereas the 5S and 7S forms could not be cross-linked into oligomers. The DNA-binding properties of each subclass were investigated after immunopurification. The affinities of the three forms for SV40 DNA and for a synthetic 19-base-pair sequence from binding site I are very similar (equilibrium dissociation constant [KD], 0.3 to 0.4 nM). The specific activity of DNA binding was greatest for the 5S and 7S subclasses and least for the 14S subclass. Moreover, the specific activity of the 5S and 7S subclasses increased sharply at about 40 h after infection, whereas the activity of the 14S subclass was maintained at a constant low level throughout infection. A model relating oligomerization and DNA binding of T antigen in infected cells is presented.  相似文献   

16.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

17.
In this paper we provide evidence that a fraction of large T antigen of simian virus 40 (SV40) interacts with cyclin A and p33cdk2 in both virus-infected and stably transformed cells. Immunoprecipitates of SV40 large T antigen from SV40-infected or SV40 large-T-antigen-transformed cells contain cyclin A, p33cdk2, and histone H1 kinase activity. Conversely, immunoprecipitates of cyclin A from these cells contain SV40 large T antigen. In this respect, SV40 large T antigen has properties similar to those of the E1A oncogene of adenoviruses and the E7 oncogene of human papillomaviruses.  相似文献   

18.
Simian virus 40 (SV40) infection stimulates confluent cultures of monkey kidney cells into successive rounds of cellular DNA synthesis without intervening mitosis. As an initial step in defining the mechanisms responsible for viral inhibition of mitosis, M-phase-promoting factor (MPF) was examined in SV40-infected CV-1 cells passing from G2 phase into a second S phase. MPF is a serine-threonine protein kinase that is essential for mitosis in eukaryotic cells. In SV40-infected cells exiting G2 phase, there was a reduced amount of MPF-associated H1 kinase activity relative to that of uninfected cells passing through mitosis. Both subunits of MPF, cyclin B and the p34cdc2 catalytic subunit, were present and in a complex in infected cells. In uninfected cultures, passage through mitosis was associated with the dephosphorylation of the p34cdc2 subunit, which is characteristic of MPF activation. In contrast, the p34cdc2 subunit remained in the tyrosine-phosphorylated, inactive form in SV40-infected cells passing from G2 phase into a second S phase. These results suggest that although the MPF complex is assembled and modified normally, SV40 interferes with pathways leading to MPF activation.  相似文献   

19.
Normal human lung fibroblast diploid cells, WI-38, become senescent after a definite number of divisions. VA-13 is a line of immortalized cells established by transformation of WI-38 cells by SV40 virus. To determine whether SV40 large T (SV40-T) antigen is essential for this immortalization of WI-38 cells we introduced an antisense gene for T antigen into VA-13. Two morphologically different types of antisense transformant (VA-AS5-8 and VA-AS37-8) were obtained. In both antisense transformants the expression of T antigen was reduced by more than 70% as compared to that in the parent cells. The morphology of the antisense transformants indicated a partial conversion to the senescent phenotype of WI-38. The relative number of cells in the S phase of the antisense transformants was decreased as compared to that in cultures of VA-13 and about 50% of cells were at G1/0. The doubling time of the transformants was prolonged to close to the doubling time of WI-38. The level of expression of retinoblastoma protein (pRB) complexed with SV40-T antigen of the antisense transformants was significantly decreased although the level of total pRB was much higher than that in VA-13. The pRB was present exclusively in the underphosphorylated form. Thus, the decreased level of formation of the complex between SV40-T and pRB or the underphosphorylation of pRB may explain the suppression of growth of antisense transformants. Together, these results show that an antisense gene for SV40-T antigen can efficiently block the cell proliferation and the cell immortalization of VA-13 cells.  相似文献   

20.
Effect of butyrate on the expression of microinjected or transfected genes   总被引:3,自引:0,他引:3  
We have studied the effect of sodium n-butyrate on the expression of specific genes. For this purpose, tk-ts13 cells (a thymidine kinase-deficient mutant originating from Syrian hamster cells) were microinjected or transfected with pC2, a plasmid containing the entire SV40 genome and the herpes simplex virus thymidine kinase gene (HSV-TK), cloned in pBR322. As a measure of the expression of these two genes, one of which is spliced (SV40) and the other one (HSV-TK) which is not, we have taken the protein levels (amount of T antigen for SV40 and incorporation of [3H]thymidine for HSV-TK) and the levels of RNA (by dot blot hybridization). The expression of the microinjected genes was inhibited when tk-ts13 cells were exposed to butyrate, actinomycin D, cycloheximide, and mitomycin C, but not when the cells were treated with insulin or dexamethasone. Further studies showed that a decrease in the percentage of T-positive cells occurs at lower concentrations of butyrate than a decrease in the levels of specific mRNA. In tk-ts13 cells transfected with pC2 and treated with butyrate at a concentration of 3 mM, SV40 mRNA levels are not decreased but the percentage of T-positive cells is decreased 50%. At 5 mM, the amount of T antigen/cell is decreased a further 40%. These results indicate that butyrate may have at least two sites of action, one at the level of mRNA amount and a second at the level of protein amount. In addition, our studies show that the use of microinjected or transfected genes offers certain unique possibilities for studies on the effects of environmental manipulations on gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号