首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitin-like protein RELATED TO UBIQUITIN (RUB) is conjugated to CULLIN (CUL) proteins to modulate the activity of Skp1-Cullin-F-box (SCF) ubiquitylation complexes. RUB conjugation to specific target proteins is necessary for the development of many organisms, including Arabidopsis (Arabidopsis thaliana). Here, we report the isolation and characterization of e1-conjugating enzyme-related1-1 (ecr1-1), an Arabidopsis mutant compromised in RUB conjugation. The ecr1-1 mutation causes a missense change located two amino acid residues from the catalytic site cysteine, which normally functions to form a thioester bond with activated RUB. A higher ratio of unmodified CUL1 relative to CUL1-RUB is present in ecr1-1 compared to wild type, suggesting that the mutation reduces ECR1 function. The ecr1-1 mutant is resistant to the auxin-like compound indole-3-propionic acid, produces fewer lateral roots than wild type, displays reduced adult height, and stabilizes a reporter fusion protein that is degraded in response to auxin, suggesting reduced auxin signaling in the mutant. In addition, ecr1-1 hypocotyls fail to elongate normally when seedlings are grown in darkness, a phenotype shared with certain other RUB conjugation mutants that is not general to auxin-response mutants. The suite of ecr1-1 molecular and morphological phenotypes reflects roles for RUB conjugation in many aspects of plant growth and development. Certain ecr1-1 elongation defects are restored by treatment with the ethylene-response inhibitor silver nitrate, suggesting that the short ecr1-1 root and hypocotyl result from aberrant ethylene accumulation. Further, silver nitrate supplementation in combination with various auxins and auxin-like compounds reveals that members of this growth regulator family may differentially rely on ethylene signaling to inhibit root growth.  相似文献   

2.
Related to Ubiquitin (RUB)/Nedd8 is a ubiquitin-like protein that covalently attaches to cullins, a subunit of the SCF (for Skp, Cdc53p/Cul1, and F-box protein) complex, an E3 ubiquitin ligase, and has been shown to be required for robust function of the complex. The effects of reducing protein levels for two Rub proteins, RUB1 and RUB2, were characterized in Arabidopsis thaliana. T-DNA insertional null lines homozygous at a single RUB-encoding locus were analyzed and found to have a wild-type phenotype. A double mutant was never recovered. More than one-quarter of the progeny from the self-fertilization of plants with a single functional RUB-encoding gene died as embryos at the two-cell stage. Outcrosses demonstrated reduced inheritance of the null allele from both the male and female parent. Hemigglutinin-tagged forms of RUB1 and RUB2 conjugate to the same cullin protein, CUL1, and produce the same conjugation pattern. To further understand the function of the RUB proteins, a construct designed to produce a double-stranded RUB1 mRNA was introduced into plants, and three lines with reduced levels of RUB1- and RUB2-encoding mRNA and RUB1/2 protein content were analyzed in detail. Mature plants were severely dwarfed, seedlings were insensitive to auxin in root assays, and dark-grown seedlings had a partial triple-response phenotype that was suppressed when seedlings were grown on ethylene perception or synthesis inhibitors. The dsrub lines produced threefold to fivefold more ethylene than the wild type. This study illustrates that RUB1 and RUB2 are genetically and biochemically redundant and demonstrates that RUB1/2 proteins are essential for early embryonic cell divisions and that they regulate diverse processes.  相似文献   

3.
The ubiquitin-related protein RUB/Nedd8 is conjugated to members of the cullin family of proteins in plants, animals, and fungi. In Arabidopsis, the RUB conjugation pathway consists of a heterodimeric E1 (AXR1-ECR1) and a RUB-E2 called RCE1. The cullin CUL1 is a subunit in SCF-type ubiquitin protein ligases (E3s), including the SCF(TIR1) complex, which is required for response to the plant hormone auxin. Our previous studies showed that conjugation of RUB to CUL1 is required for normal SCF(TIR1) function. The RING-H2 finger protein RBX1 is a subunit of SCF complexes in fungi and animals. The function of RBX1 is to bind the ubiquitin-conjugating enzyme E2 and bring it into close proximity with the E3 substrate. We have identified two Arabidopsis genes encoding RING-H2 proteins related to human RBX1. Studies of one of these proteins indicate that, as in animals and fungi, Arabidopsis RBX1 is an SCF subunit. Reduced RBX1 levels result in severe defects in growth and development. Overexpression of RBX1 increases RUB modification of CUL1. This effect is associated with reduced auxin response and severe growth defects similar to those observed in axr1 mutants. As in the axr1 mutants, RBX1 overexpression stabilizes the SCF(TIR1) substrate AXR2/IAA7. The RBX1 protein is a component of SCF complexes in Arabidopsis. In addition to its direct role in SCF E3 ligase activity, RBX1 promotes the RUB modification of CUL1 and probably functions as an E3 ligase in the RUB pathway. Hypermodification of CUL1 disrupts SCF(TIR1) function, suggesting that cycles of RUB conjugation and removal are important for SCF activity.  相似文献   

4.
Cullin-RING ubiquitin-protein ligases such as the Skp1, cullin, F-box protein (SCF) have been implicated in many growth and developmental processes in plants. Normal SCF function requires that the CUL1 subunit be post-translationally modified by related to ubiquitin (RUB), a protein related to ubiquitin. This process is mediated by two enzymes: the RUB-activating and RUB-conjugating enzymes. In Arabidopsis, the RUB-activating enzyme is a heterodimer consisting of AXR1 and ECR1. Mutations in the AXR1 gene result in a pleiotropic phenotype that includes resistance to the plant hormone auxin. Here we report that the AXL (AXR1-like) gene also functions in the RUB conjugation pathway. Overexpression of AXL in the axr1-3 background complements the axr1-3 phenotype. Biochemical analysis indicates that AXL overexpression restores CUL1 modification to the wild-type level, indicating that AXR1 and AXL have the same biochemical activity. Although the axl mutant resembles wild-type plants, the majority of axr1 axl-1 double mutants are embryo or seedling lethal. Furthermore, the axl-1 mutation reveals novel RUB-dependent processes in embryo development. We conclude that AXR1 and AXL function redundantly in the RUB conjugating pathway.  相似文献   

5.
The related-to-ubiquitin (RUB) protein is post-translationally conjugated to the cullin subunit of the SCF (SKP1, Cullin, F-box) class of ubiquitin protein ligases. Although the precise biochemical function of RUB modification is unclear, studies indicate that the modification is important for SCF function. In Arabidopsis, RUB modification of CUL1 is required for normal function of SCF(TIR1), an E3 required for response to the plant hormone auxin. In this report we show that an Arabidopsis protein called RCE1 functions as a RUB-conjugating enzyme in vivo. A mutation in the RCE1 gene results in a phenotype like that of the axr1 mutant. Most strikingly, plants deficient in both RCE1 and AXR1 have an embryonic phenotype similar to mp and bdl mutants, previously shown to be deficient in auxin signaling. Based on these results, we suggest that the RUB-conjugation pathway is required for auxin-dependent pattern formation in the developing embryo. In addition, we show that RCE1 interacts directly with the RING protein RBX1 and is present in a stable complex with SCF. We propose that RBX1 functions as an E3 for RUB modification of CUL1.  相似文献   

6.
SMALL ACIDIC PROTEIN 1 (SMAP1) functions upstream of the degradation of AUX/IAA-proteins in the response to 2,4-dichlorophenoxyacetic acid and physically interacts with the COP9 SIGNALOSOME (CSN). Also, its function is linked to RELATED TO UBIQUITIN (RUB) modification. To further investigate the relationship between SMAP1 and the RUB modification system, we examined the effect of MLN4924, an inhibitor of RUB/NEDD8-activating E1 enzyme, on the growth of Arabidopsis thaliana. We found that the anti-auxin resistant 1 mutants, which lack SMAP1, are more sensitive to MLN4924 than wild type and that SMAP1 is responsible for this hypersensitivity. This new evidence supports our previous speculation that SMAP1 acts in Cullin-RING ubiquitin E3 ligase regulated signaling processes via its interaction with components associated with the RUB modification system.  相似文献   

7.
RELATED TO UBIQUITIN (RUB) modification of CULLIN (CUL) subunits of the CUL-RING ubiquitin E3 ligase (CRL) superfamily regulates CRL ubiquitylation activity. RUB modification requires E1 and E2 enzymes that are analogous to, but distinct from, those activities required for UBIQUITIN (UBQ) attachment. Gene duplications are widespread in angiosperms, and in line with this observation, components of the RUB conjugation pathway are found in multiples in Arabidopsis. To further examine the extent of redundancy within the RUB pathway, we undertook biochemical and genetic characterizations of one such duplication event- the duplication of the genes encoding a subunit of the RUB E1 into AUXIN RESISTANT1 (AXR1) and AXR1-LIKE1 (AXL1). In vitro, the two proteins have similar abilities to function with E1 C-TERMINAL-RELATED1 (ECR1) in catalyzing RUB1 activation and RUB1-ECR1 thioester formation. Using mass spectrometry, endogenous AXR1 and AXL1 proteins were found in complex with 3HA-RUB1, suggesting that AXR1 and AXL1 exist in parallel RUB E1 complexes in Arabidopsis. In contrast, AXR1 and AXL1 differ in ability to correct phenotypic defects in axr1-30, a severe loss-of-function AXR1 mutant, when the respective coding sequences are expressed from the same promoter, suggesting differential in vivo functions. These results suggest that while both proteins function in the RUB pathway and are biochemically similar in RUB-ECR1 thioester formation, they are not functionally equivalent.  相似文献   

8.
9.
The plant hormone cytokinin plays essential roles in many aspects of growth and development. The cytokinin signal is transmitted by a multi‐step phosphorelay to the members of two functionally antagonistic classes of Arabidopsis response regulators (ARRs): type B ARRs (response activators) and type A ARRs (negative‐feedback regulators). Previous studies have shown that mutations in AXR1, encoding a subunit of the E1 enzyme in the RUB (related to ubiquitin) modification pathway, lead to decreased cytokinin sensitivity. Here we show that the cytokinin resistance of axr1 seedlings is suppressed by loss of function of the type A ARR family member ARR5. Based on the established role of the RUB pathway in ubiquitin‐dependent proteolysis, these data suggest that AXR1 promotes the cytokinin response by facilitating type A ARR degradation. Indeed, both genetic (axr1 mutants) and chemical (MLN4924) suppression of RUB E1 increased ARR5 stability, suggesting that the ubiquitin ligase that promotes ARR5 proteolysis requires RUB modification for optimal activity.  相似文献   

10.
Feng S  Shen Y  Sullivan JA  Rubio V  Xiong Y  Sun TP  Deng XW 《The Plant cell》2004,16(7):1870-1882
Ubiquitin/proteasome-mediated protein degradation controls various developmental pathways in eukaryotes. Cullin-containing complexes are both versatile and abundant groups of RING family ubiquitin E3 ligases, whose activities are subject to control by RUB/Nedd8 (for related to ubiquitin/neural precursor cell-expressed developmentally downregulated 8) modification of their cullin subunits. Here, we report the identification of an Arabidopsis thaliana counterpart of human CAND1 (cullin-associated and neddylation-dissociated) and demonstrate that it can preferentially interact with unmodified CUL1. The Arabidopsis cand1-1 null mutant displays distinct phenotypes, including late flowering, aerial rosettes, floral organ defects, low fertility, dwarfism, loss of apical dominance, and altered responses to multiple plant hormones. Molecular analyses show that many of these defects are because of compromised activity of CUL1-containing ubiquitin E3 ligases, indicating that CAND1 is required for their optimal activity. Furthermore, the cand1-1 mutant displays a partial constitutive photomorphogenic phenotype and has defects in HY5 degradation in the absence of light, a process mediated by a different RING family E3, COP1. Thus, our data provides genetic support for a critical role of CAND1 in regulating various ubiquitin E3 ligases and their targeted cellular and developmental pathways.  相似文献   

11.
Previously, a dysfunction of the SMALL ACIDIC PROTEIN1 (SMAP1) gene was identified as the cause of the anti-auxin resistant1 (aar1) mutant of Arabidopsis (Arabidopsis thaliana). SMAP1 is involved in the response pathway of synthetic auxin, 2,4-dichlorophenoxyacetic acid, and functions upstream of the auxin/indole-3-acetic acid protein degradation step in auxin signaling. However, the exact mechanism by which SMAP1 functions in auxin signaling remains unknown. Here, we demonstrate that SMAP1 is required for normal plant growth and development and the root response to indole-3-acetic acid or methyl jasmonate in the auxin resistant1 (axr1) mutation background. Deletion analysis and green fluorescent protein/glutathione S-transferase pull-down assays showed that SMAP1 physically interacts with the CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME (CSN) via the SMAP1 F/D region. The extremely dwarf phenotype of the aar1-1 csn5a-1 double mutant confirms the functional role of SMAP1 in plant growth and development under limiting CSN functionality. Our findings suggest that SMAP1 is involved in the auxin response and possibly in other cullin-RING ubiquitin ligase-regulated signaling processes via its interaction with components associated with RELATED TO UBIQUITIN modification.  相似文献   

12.
In plants, the small protein related to ubiquitin (RUB) modifies cullin (CUL) proteins in ubiquitin E3 ligases to allow for efficient transfer of ubiquitin to substrate proteins for degradation by the 26S proteasome. At the molecular level, the conjugation of RUB to individual CUL proteins is transient in nature, which aids in the stability of the cullins and adaptor proteins. Many changes in cellular processes occur within the plant upon exposure to light, including well-documented changes in the stability of individual proteins. However, overall activity of E3 ligases between dark- and light-grown seedlings has not been assessed in plants. In order to understand more about the activity of the protein degradation pathway, overall levels of RUB-modified CULs were measured in Arabidopsis thaliana seedlings growing in different light conditions. We found that light influenced the global levels of RUBylation on CULs, but not uniformly. Blue light had little effect on both Cul1 and Cul3 RUBylation levels. However, red light directed the increase in Cul3 RUBylation levels, but not Cul1. This red-light regulation of Cul3 was at least partially dependent on the activation of the phytochrome B signaling pathway. The results indicate that the RUBylation levels on individual CULs change in response to different light conditions, which enable plants to fine-tune their growth and development to the various light environments.  相似文献   

13.
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.  相似文献   

14.
Moon J  Zhao Y  Dai X  Zhang W  Gray WM  Huq E  Estelle M 《Plant physiology》2007,143(2):684-696
Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development.  相似文献   

15.
Ethylene biosynthesis is directed by a family of 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS) that convert S -adenosyl- l -methionine to the immediate precursor ACC. Members of the type-2 ACS subfamily are strongly regulated by proteolysis with various signals stabilizing the proteins to increase ethylene production. In Arabidopsis, this turnover is mediated by the ubiquitin/26 S proteasome system, using a broad complex/tramtrack/bric-a-brac (BTB) E3 assembled with the ETHYLENE OVERPRODUCER 1 (ETO1) BTB protein for target recognition. Here, we show that two Arabidopsis BTB proteins closely related to ETO1, designated ETO1-like (EOL1) and EOL2, also negatively regulate ethylene synthesis via their ability to target ACSs for breakdown. Like ETO1, EOL1 interacts with type-2 ACSs (ACS4, ACS5 and ACS9), but not with type-1 or type-3 ACSs, or with type-2 ACS mutants that stabilize the corresponding proteins in planta . Whereas single and double mutants affecting EOL1 and EOL2 do not show an ethylene-related phenotype, they exaggerate the effects caused by inactivation of ETO1 , and further increase ethylene production and the accumulation of ACS5 in eto1 plants. The triple eto1 eol1 eol2 mutant phenotype can be effectively rescued by the ACS inhibitor aminoethoxyvinylglycine, and by silver, which antagonizes ethylene perception. Together with hypocotyl growth assays showing that the sensitivity and response kinetics to ethylene are normal, it appears that ethylene synthesis, but not signaling, is compromised in the triple mutant. Collectively, the data indicate that the Arabidopsis BTB E3s assembled with ETO1, EOL1 and EOL2 work together to negatively regulate ethylene synthesis by directing the degradation of type-2 ACS proteins.  相似文献   

16.
Brassinosteroid (BR), an endogenous steroid growth regulator of higher plants, enhances expansion and division of the cell in a number of plant species. It has been recently reported that a shared auxin–BR signalling pathway is involved in the seedling growth in Arabidopsis . Here, we show that BR specifically enhanced the expression of AtACS4 , which encodes an auxin-responsive ACC synthase 4, by a distinct temporal induction mechanism compared with that of IAA in etiolated Arabidopsis seedlings. This BR induction of AtACS4 was undetectable in the light-grown seedlings. In addition, BR failed to activate the AtACS4 gene in auxin-resistant1 ( axr1-3 ) and auxin-resistant2 ( axr2-1 ), both of which are auxin-resistant mutants. Thus, it appears that there is a possible regulatory link between light, auxin and BR to control ethylene synthesis in Arabidopsis young seedlings. Analysis of transgenic Arabidopsis plants harbouring AtACS4::GUS fusion revealed the AtACS4 promoter-driven GUS activity in the highly elongating zone of the hypocotyls in response to BR treatment. Furthermore, Arabidopsis plants homozygous for the T-DNA insertion in the AtACS4 gene exhibited longer hypocotyls and roots than those of control seedlings. Taken together, these results suggest that the BR-induced ethylene production may participate in the elongation growth response in early seedling development of Arabidopsis .  相似文献   

17.
Genetic approaches using Arabidopsis thaliana aimed at the identification of mutations affecting events involved in auxin signalling have usually led to the isolation of auxin-resistant mutants. From a selection screen specifically developed to isolate auxin-hypersensitive mutants, one mutant line was selected for its increased sensitivity to auxin (x 2 to 3) for the root elongation response. The genetic analysis of sax1 (hypersensitive to abscisic acid and auxin) indicated that the mutant phenotype segregates as a single recessive Mendelian locus, mapping to the lower arm of chromosome 1. Sax1 seedlings grown in vitro showed a short curled primary root and small, round, dark-green cotyledons. In the greenhouse, adult sax1 plants were characterized by a dwarf phenotype, delayed development and reduced fertility. Further physiological characterization of sax1 seedlings revealed that the most striking trait was a large increase (x 40) in ABA-sensitivity of root elongation and, to a lesser extent, of ABA-induced stomatal closure; in other respects, hypocotyl elongation was resistant to gibberellins and ethylene. These alterations in hormone sensitivity in sax1 plants co-segregated with the dwarf phenotype suggesting that processes involved in cell elongation are modified. Treatment of mutant seedlings with an exogenous brassinosteroid partially rescued a wild-type size, suggesting that brassinosteroid biosynthesis might be affected in sax1 plants. Wild-type sensitivities to ABA, auxin and gibberellins were also restored in sax1 plants by exogenous application of brassinosteroid, illustrating the pivotal importance of the BR-related SAX1 gene.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号