共查询到20条相似文献,搜索用时 9 毫秒
1.
The Neotropics are one of the most species rich regions on Earth, with over 3150 species of birds. This unrivaled biodiversity has been attributed to higher proportions of mountain ranges, tropical rain forest or rain fall in the forest than in any other major biogeographic regions. Five primary hypotheses aim to explain processes of diversification within the Neotropics; (1) the Pleistocene refuge hypothesis, (2) the riverine barrier hypothesis, (3) the Miocene marine incursions hypothesis, (4) the ecological gradient hypothesis, and (5) the impact of the last Andean uplift serving as a barrier between eastern and western population Andean populations. We assessed these hypotheses to see which best explained the species richness of the forest-falcons (Micrastur), a poorly known lineage of birds that inhabit lowland and mid-elevation humid forest. Our analyses suggest all speciation events within the genus Micrastur probably occurred in the last 2.5-3.6 myrs, at or before the Pliocene/Pleistocene boundary, with the basal split within the genus being 7 myrs old. Hence our data allow us to formerly reject the classical Pleistocene refuge for Micrastur, Our divergence time estimates are younger that dates for the Miocene marine incursions, the riverine barrier and the Andean uplift hypotheses. 相似文献
2.
Roger AJ Hug LA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2006,361(1470):1039-1054
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes. 相似文献
3.
Although protein evolution can be approximated as a "molecular evolutionary clock," it is well known that sequence change departs from a clock-like Poisson expectation. Through studying the deviations from a molecular clock, insight can be gained into the forces shaping evolution at the level of proteins. Generally, substitution patterns that show greater variance than the Poisson expectation are said to be "overdispersed." Overdispersion of sequence change may result from temporal variation in the rate at which amino acid substitutions occur on a phylogeny. By comparing the genomes of four species of yeast, five species of Drosophila, and five species of mammals, we show that the extent of overdispersion shows a strong negative correlation with the effective population size of these organisms. Yeast proteins show very little overdispersion, while mammalian proteins show substantial overdispersion. Additionally, X-linked genes, which have reduced effective population size, have gene products that show increased overdispersion in both Drosophila and mammals. Our research suggests that mutational robustness is more pervasive in organisms with large population sizes and that robustness acts to stabilize the molecular evolutionary clock of sequence change. 相似文献
4.
5.
Using variable temperature techniques, the spin label spectral resolution of hemoglobin labeled at the beta93 cysteines with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodonacetamide has been greatly enhanced. The effects of different ligands, inositol hexaphosphate, pH and salt concentration upon spin labeled ferrous and ferric hemoglobin indicate that the beta chain tertiary structure exhibits considerable variability within the oxy and deoxy quaternary structures. From these studies ligand and spin state changes both appear to be of significance in producing structural changes; binding of inositol hexaphosphate then produces further structural changes secondary in amplitude. 相似文献
6.
The origin of endemic South American canid fauna has been traditionally linked with the rise of the Isthmus of Panama, suggesting that diversification of the dog fauna on this continent occurred very rapidly. Nevertheless, despite its obvious biogeographic appeal, the tempo of Canid evolution in South America has never been studied thoroughly. This issue can be suitably tackled with the inference of a molecular timescale. In this study, using a relaxed molecular clock method, we estimated that the most recent common ancestor of South American canids lived around 4 Ma, whereas all other splits within the clade occurred after the rise of the Panamanian land bridge. We suggest that the early diversification of the ancestors of the two main lineages of South American canids may have occurred in North America, before the Great American Interchange. Moreover, a concatenated morphological and molecular analysis put some extinct canid species well within the South American radiation, and shows that the dental adaptations to hypercarnivory evolved only once in the South American clade. 相似文献
7.
J F Sprent 《Journal of helminthology》1982,56(3):275-295
Ascaridoid nematodes occurring in South American mammals are divided into categories based on their possible origin. The affinities are discussed of five species so far known only from the Neotropical Region. Toxocara alienata (Rudolphi 1819) is reported from Nasua rufa socialis, Procyon cancrivorus, and Tayassus torquatus. The specimens from T. torquatus are described and found most closely to resemble Toxocara mackerrasae from south-east Asian and Austrialian rodents. Anisakis insignis from Inia geoffrensis is transferred back to Peritrachelius Diesing, 1851, on account of the structure of the lips and spicules. P. insignis is shown to exhibit remarkable convergence of lip structure with Lagochilascaris turgida from Didelphis marsupialis. Galeiceps longispiculum (Freitas & Lent, 1941) from Pteronura brasiliensis is confirmed as a species distinct from G. cucullus (Linstow, 1899) and G. spinicollis (Baylis, 1923), but G. simiae (Mosgovoy, 1951) is considered to be a synonym of G. spinicollis. An error in the host record of G. spinicollis is corrected from Cercopithecus leucampyx kandti to Lutra maculicollis kivuana. Ascaris dasypodina Baylis, 1922 from armadillos, including Cabassous unicinctus and Tolypeutes matacos, is redescribed and placed in a new genus Bairdascaris. The question is raised as to whether some species in Lagochilascaris, Galeiceps, and Toxocara may have crossed directly by sea from Africa to South America, rather than entering via North America. 相似文献
8.
Timing the eastern Asian-eastern North American floristic disjunction: molecular clock corroborates paleontological estimates 总被引:4,自引:0,他引:4
Xiang QY Soltis DE Soltis PS Manchester SR Crawford DJ 《Molecular phylogenetics and evolution》2000,15(3):462-472
Sequence data of the chloroplast gene rbcL were used to estimate the time of the well-known eastern Asian-eastern North American floristic disjunction. Sequence divergence of rbcL was examined for 22 species of 11 genera (Campsis, Caulophyllum, Cornus, Decumaria, Liriodendron, Menispermum, Mitchella, Pachysandra, Penthorum, Podophyllum, and Phryma) representing a diverse array of flowering plants occurring disjunctly in eastern Asia and eastern North America. Divergence times of putative disjunct species pairs were estimated from synonymous substitutions, using rbcL molecular clocks calibrated for Cornus. Relative rate tests were performed to assess rate constancy of rbcL evolution among lineages. Corrections of estimates of divergence times for each species pair were made based on rate differences of rbcL between Cornus and other species pairs. Results of these analyses indicate that the time of divergence of species pairs examined ranges from 12.56 +/- 4.30 million years to recent (<0.31 million years), with most within the last 10 million years (in the late Miocene and Pliocene). These results suggest that the isolation of most morphologically similar disjunct species in eastern Asia and eastern North America occurred during the global climatic cooling period that took place throughout the late Tertiary and Quaternary. This estimate is closely correlated with paleontological evidence and in agreement with the hypothesis that considers the eastern Asian-eastern North American floristic disjunction to be the result of the range restriction of a once more or less continuously distributed mixed mesophytic forest of the Northern Hemisphere that occurred during the late Tertiary and Quaternary. This implies that in most taxa the disjunction may have resulted from vicariance events. However, long-distance dispersal may explain the disjunct distribution of taxa with low divergence, such as Menispermum. 相似文献
9.
10.
The Andean mountain range has played an important role in the evolution of South American biota. However, there is little understanding of the patterns of species diversity across latitudinal and altitudinal gradients. In this paper, we examine the diversity of small mammals along the South Central Dry Andes (SCDA) within the framework of two contrasting hypotheses: (a) species richness decreases with increasing elevation and latitude; and (b) species richness peaks at altitudinal midpoints (mid‐domain). We explore the composition of the species pool, the impact of species–area relationships and the Rapoport effect (i.e. size of geographic ranges) along latitudinal and elevational gradients. First, we constructed a database of SCDA small mammals. Then, species richness patterns were analysed through generalized models, and species–area relationships were assessed by log–log regressions; the curvilinear method (c = S/Az) was use to compute richness corrected by area size. Lastly, the Rapoport effect was evaluated using the midpoint method. Our results show: (1) a richness of 67 small mammals along the SCDA, of which 36 are endemic; (2) a hump‐shaped pattern in species richness along elevation and latitudinal gradients; (3) a species–area relationship for both gradients; (4) endemic species corrected by area present a strong and positive relationship with elevation; (5) a Rapoport effect for the latitudinal ranges, but no effect across the elevational gradient; and (6) a major species turnover between 28° and 30° south latitude. This is the first study quantifying the diversity of small mammals encompassing the central Andean region. Overall, our macrogeographic analysis supports the previously postulated role of the Andes in the diversification of small mammals (i.e. in situ cladogenesis) and highlights some basic attributes (i.e. anatomy of geographic ranges; species–area relationships) when considering the consequences of climate change on biodiversity conservation of mountain ecosystems. 相似文献
11.
S. IVAN PEREZ JOSÉ ALEXANDRE FELIZOLA DINIZ-FILHO F. JAMES ROHLF SÉRGIO FURTADO DOS REIS 《Biological journal of the Linnean Society. Linnean Society of London》2009,98(3):646-660
Understanding the processes underlying morphological diversification is a central goal in ecology and evolutionary biology and requires the integration of information about phylogenetic divergence and ecological niche diversity. In the present study, we use geometric morphometrics and comparative methods to investigate morphological diversification in Neotropical spiny rats of the family Echimyidae. Morphological diversification is studied as shape variation in the skull, comprising a structure composed of four distinct units: vault, base, orognathofacial complex, and mandible. We demonstrate association among patterns of variation in shape in different cranial units, levels of phylogenetic divergence, and ecological niche diversification. At the lower level of phylogenetic divergence, there is significant and positive concordance between patterns of phylogenetic divergence and cranial shape variation in all cranial units. This concordance may be attributable to the phylogenetic and shape distances being calculated between species that occupy the same niche. At higher phylogenetic levels of divergence and with ecological niche diversity, there is significant concordance between shape variation in all four cranial units and the ecological niches. In particular, the orognathofacial complex revealed the most significant association between shape variation and ecological niche diversity. This association may be explained by the great functional importance of the orognathofacial complex. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 646–660. 相似文献
12.
The impact of early Quaternary climate change on the diversification and population dynamics of a South American cactus species 下载免费PDF全文
Gislaine Angélica Rodrigues Silva Alexandre Antonelli Anita Lendel Evandro de Marsola Moraes Maura Helena Manfrin 《Journal of Biogeography》2018,45(1):76-88
Aim
Climatic oscillations have been suggested to promote speciation and changes in species distributions, mostly in connection with the Last Glacial Maximum (LGM). However, the LGM is just the most recent of the 20+ glacial‐interglacial periods that characterise the Quaternary. Here, we investigate the role of climatic changes and geomorphological features in shaping the evolution, distribution and population dynamics of the South American cactus Cereus hildmannianus.Location
South‐eastern South America.Methods
We built a large fossil‐calibrated phylogeny for cacti (family Cactaceae), comprising 128 species distributed in all subfamilies, using a Bayesian relaxed clock. We used the results to derive a secondary calibration for a population‐level phylogeny in C. hildmannianus. We amplified two plastid (trnQ‐5′rps16 and psbJ‐petA) and one nuclear marker (PhyC) for 24 populations. We estimated population dynamics, ancestral areas, and species distribution models to infer the clade's evolutionary history in time and space.Results
Our results show a major population divergence of C. hildmannianus at c. 2.60 Ma, which is strikingly coincident with the transition of the Pliocene–Pleistocene and onset of Quaternary glaciations. This was followed by a complex phylogeographic scenario involving population expansions across ecologically diverse regions.Main conclusions
Contrary to the dominant research focus on the LGM, our study indicates a major impact of the first Quaternary glaciation on the distribution and population divergence of a South American plant species. Further intraspecific events seem related to successive climatic changes and geomorphology, including the development of the coastal plain and its peculiar diversity. We propose that the first Quaternary glaciation acted as a major evolutionary bottleneck, whereby many warm‐adapted lineages succumbed, while those that survived could diversify and better cope with subsequent climatic oscillations. 相似文献13.
In an attempt to decipher the biotic response of Foraminifera to the paleoenvironmental changes recorded in the Aptian historical stratotypes, a number of quantitative parameters (i.e. specific diversity and abundance of dominant groups) were examined in three sections of upper Bedoulian and lower Gargasian beds in south-eastern France. In most cases, the established biotic changes do not correlate strictly with obvious lithological and geochemical variations such as the percentage of CaCO3 and δ13C. However, a pattern of cyclic fluctuations in various microfaunal parameters appears to exist in parts of the studied interval, which may record paleoenvironmental changes due to a cyclic orbital forcing. To test this hypothesis, based on a preliminary study, a more closely spaced sampling of these continuous, expanded and relatively well calibrated stratotypic series is required. 相似文献
14.
Streitberger K Schweizer M Kropatsch R Dekomien G Distl O Fischer MS Epplen JT Hertwig ST 《Animal genetics》2012,43(5):577-586
As a result of strong artificial selection, the domesticated dog has arguably become one of the most morphologically diverse vertebrate species, which is mirrored in the classification of around 400 different breeds. To test the influence of breeding history on the genetic structure and variability of today's dog breeds, we investigated 12 dog breeds using a set of 19 microsatellite markers from a total of 597 individuals with about 50 individuals analysed per breed. High genetic diversity was noted over all breeds, with the ancient Asian breeds (Akita, Chow Chow, Shar Pei) exhibiting the highest variability, as was indicated chiefly by an extraordinarily high number of rare and private alleles. Using a Bayesian clustering method, we detected significant genetic stratification within the closely related Schnauzer breeds. The individuals of these three recently differentiated breeds (Miniature, Standard and Giant Schnauzer) could not be assigned to a single cluster each. This hidden genetic structure was probably caused by assortative mating owing to breeders' preferences regarding coat colour types and the underlying practice of breeding in separate lineages. Such processes of strong artificial disruptive selection for different morphological traits in isolated and relatively small lineages can result in the rapid creation of new dog types and potentially new breeds and represent a unique opportunity to study the evolution of genetic and morphological differences in recently diverged populations. 相似文献
15.
Bell CD Soltis DE Soltis PS 《Evolution; international journal of organic evolution》2005,59(6):1245-1258
The age of the angiosperms has long been of interest to botanists and evolutionary biologists. Many early efforts to date the age of the angiosperms and evolutionary divergences within the angiosperm clade using a molecular clock have yielded age estimates that are grossly inconsistent with the fossil record. We investigated the age of angiosperms using Bayesian relaxed clock (BRC) and penalized likelihood (PL) approaches. Both of these methods allow the incorporation of multiple fossil constraints into the optimization procedure. The BRC method allows a range of values for among-lineage rate of substitution, from a nearly clocklike behavior to a condition in which each branch is allowed an optimal substitution rate, and also accounts for variation in molecular evolution across multiple genes. A topology derived from an analysis of genes from all three plant genomes for 71 taxa was used as a backbone. The effects on age estimates of different genes, single-gene versus concatenated datasets, and the inclusion and assumptions of fossils as age constraints were examined. In addition, the influence of prior distributions on estimates of divergence times was also explored. These results indicate that widely divergent age estimates can result from the different methods (198-139 million years ago), different sources of data (275-122 million years ago), and the inclusion of temporal constraints to topologies. Most dates, however, are between 180-140 million years ago, suggesting a Middle Jurassic-Early Cretaceous origin of flowering plants, predating the oldest unequivocal fossil angiosperms by about 45-5 million years. Nonetheless, these dates are consistent with other recent studies that have used methods that relax the assumption of a strict molecular clock and also agree with the hypothesis that the angiosperms may be somewhat older than the fossil record indicates. 相似文献
16.
17.
18.
Galewski T Mauffrey JF Leite YL Patton JL Douzery EJ 《Molecular phylogenetics and evolution》2005,34(3):601-615
The phylogeny of South American spiny rats (Rodentia; Echimyidae) was studied using the exon 28 of the von Willebrand Factor nuclear gene (vWF). Sequences were analysed separately and in combination with a mitochondrial dataset (cyt b, 12S and 16S rRNAs) used in previous publications. The basal polytomy of echimyids was partially resolved and unexpected intergeneric clades were recovered. Thus, the intimate nested position of Myocastor within echimyids is evidenced. A well-supported clade is identified, including all the arboreal genera, and a group formed by Myocastor, Thrichomys, and Proechimys+Hoplomys. The clustering of Euryzygomatomys+Clyomys with Trinomys is also suggested. On the opposite, the phylogenetic position of Capromys as well as the relationships among arboreal genera remain unclear. Molecular divergence times were estimated using a Bayesian relaxed molecular clock and suggest a Middle Miocene origin for most of modern genera. The ecomorphological diversification of echimyids is discussed in the light of these new results and past environmental modifications in South America. 相似文献
19.
Entrainment is as fundamental to an organism's circadian timing as are the molecular mechanisms involved in the functioning of the intracellular clock oscillator. In nature, one of the principle, although not the only, circadian entraining stimulus (Zeitgeber) is provided by the daily light--dark cycles. In animals, the visual processing apparatus alone is inadequate to accomplish the task of transducing circadian photic signals to the clockwork machinery. In fact, it is ever more appreciated by circadian biologists that organisms as divergent as plants and mammals have evolved a wonderfully complex array of partly redundant specializations which can guarantee the precise alignment of biological and environmental time. Research in circadian biology is cruising at such a rate that attempts to review the state of the art can only hope, at best, to provide a snapshot of the speeding cruiser from its wake. This paper will hopefully provide a reasonably sharp portrayal of what is at hand. 相似文献
20.
Margolin W 《Current biology : CB》2006,16(3):R85-R87
FrzS protein is important for normal social motility in myxobacteria, which includes periodic reversals in the direction of cell motion. Recent results show that cell reversal correlates with the migration of FrzS from the old leading pole of the cell to the new leading pole. 相似文献