首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the perspective of systems science, tumorigenesis can be hypothesized as a critical transition (an abrupt shift from one state to another) between proliferative and apoptotic attractors on the state space of a molecular interaction network, for which an attractor is defined as a stable state to which all initial states ultimately converge, and the region of convergence is called the basin of attraction. Before the critical transition, a cellular state might transit between the basin of attraction for an apoptotic attractor and that for a proliferative attractor due to the noise induced by the inherent stochasticity in molecular interactions. Such a flickering state transition (state transition between the basins of attraction for alternative attractors from the impact of noise) would become more frequent as the cellular state approaches near the boundary of the basin of attraction, which can increase the variation in the estimate of the respective basin size. To investigate this for colorectal tumorigenesis, we have constructed a stochastic Boolean network model of the molecular interaction network that contains an important set of proteins known to be involved in cancer. In particular, we considered 100 representative sequences of 20 gene mutations that drive colorectal tumorigenesis. We investigated the appearance of cancerous cells by examining the basin size of apoptotic, quiescent, and proliferative attractors along with the sequential accumulation of gene mutations during colorectal tumorigenesis. We introduced a measure to detect the flickering state transition as the variation in the estimate of the basin sizes for three-phenotype attractors from the impact of noise. Interestingly, we found that this measure abruptly increases before a cell becomes cancerous during colorectal tumorigenesis in most of the gene mutation sequences under a certain level of stochastic noise. This suggests that a frequent flickering state transition can be a precritical phenomenon of colorectal tumorigenesis.  相似文献   

2.
Emiliania huxleyi (Lohmann) Hay et Mohler is a cosmopolitan coccolithophorid that is known to be an excellent competitor for phosphate. A previous survey of cell‐surface proteins induced by phosphorus limitation in strain CCMP 374 yielded three abundant proteins. Using CCMP 1516, the strain chosen for genome sequence determination, we report the cDNA, genomic, and amino acid sequence of one cell‐surface phosphorus‐limitation induced protein and evidence that a second protein is highly similar. The introns within the genomic DNA encoding this cell‐surface protein as well as those defined by other phosphate‐regulated expressed sequence tags are analyzed. As these proteins are the most abundant cell‐surface proteins present under phosphorus limitation, they likely have a role in the ability of this organism to compete for phosphate.  相似文献   

3.

Background

Boolean network modeling has been widely used to model large-scale biomolecular regulatory networks as it can describe the essential dynamical characteristics of complicated networks in a relatively simple way. When we analyze such Boolean network models, we often need to find out attractor states to investigate the converging state features that represent particular cell phenotypes. This is, however, very difficult (often impossible) for a large network due to computational complexity.

Results

There have been some attempts to resolve this problem by partitioning the original network into smaller subnetworks and reconstructing the attractor states by integrating the local attractors obtained from each subnetwork. But, in many cases, the partitioned subnetworks are still too large and such an approach is no longer useful. So, we have investigated the fundamental reason underlying this problem and proposed a novel efficient way of hierarchically partitioning a given large network into smaller subnetworks by focusing on some attractors corresponding to a particular phenotype of interest instead of considering all attractors at the same time. Using the definition of attractors, we can have a simplified update rule with fixed state values for some nodes. The resulting subnetworks were small enough to find out the corresponding local attractors which can be integrated for reconstruction of the global attractor states of the original large network.

Conclusions

The proposed approach can substantially extend the current limit of Boolean network modeling for converging state analysis of biological networks.
  相似文献   

4.
Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may also be found in other regions of the cerebral cortex.  相似文献   

5.
A discrete model of a biological regulatory network can be represented by a discrete function that contains all available information on interactions between network components and the rules governing the evolution of the network in a finite state space. Since the state space size grows exponentially with the number of network components, analysis of large networks is a complex problem. In this paper, we introduce the notion of symbolic steady state that allows us to identify subnetworks that govern the dynamics of the original network in some region of state space. We state rules to explicitly construct attractors of the system from subnetwork attractors. Using the results, we formulate sufficient conditions for the existence of multiple attractors resp. a cyclic attractor based on the existence of positive resp. negative feedback circuits in the graph representing the structure of the system. In addition, we discuss approaches to finding symbolic steady states. We focus both on dynamics derived via synchronous as well as asynchronous update rules. Lastly, we illustrate the results by analyzing a model of T helper cell differentiation.  相似文献   

6.
Cell fusion, a process that merges two or more cells into one, is required for normal development and has been explored as a tool for stem cell therapy. It has also been proposed that cell fusion causes cancer and contributes to its progression. These functions rely on a poorly understood ability of cell fusion to create new cell types. We suggest that this ability can be understood by considering cells as attractor networks whose basic property is to adopt a set of distinct, stable, self-maintaining states called attractors. According to this view, fusion of two cell types is a collision of two networks that have adopted distinct attractors. To learn how these networks reach a consensus, we model cell fusion computationally. To do so, we simulate patterns of gene activities using a formalism developed to simulate patterns of memory in neural networks. We find that the hybrid networks can assume attractors that are unrelated to parental attractors, implying that cell fusion can create new cell types by nearly instantaneously moving cells between attractors. We also show that hybrid networks are prone to assume spurious attractors, which are emergent and sporadic network states. This finding means that cell fusion can produce abnormal cell types, including cancerous types, by placing cells into normally inaccessible spurious states. Finally, we suggest that the problem of colliding networks has general significance in many processes represented by attractor networks, including biological, social, and political phenomena.  相似文献   

7.
8.
In this article, we analyze combined effects of LTP/LTD and synaptic scaling and study the creation of persistent activity from a periodic or chaotic baseline attractor. The bifurcations leading to the creation of new attractors have been detailed; this was achieved using a mean field approximation. Attractors encoding persistent activity can notably appear via generalized period-doubling bifurcations, tangent bifurcations of the second iterates or boundary crises, after which the basins of attraction become irregular. Synaptic scaling is shown to maintain the coexistence of a state of persistent activity and the baseline. According to the rate of change of the external inputs, different types of attractors can be formed: line attractors for rapidly changing external inputs and discrete attractors for constant external inputs.  相似文献   

9.
In order to study the problem how the olfactory neural system processes the odorant molecular information for constructing the olfactory image of each object, we present a dynamic model of the olfactory bulb constructed on the basis of well-established experimental and theoretical results. The information relevant to a single odor, i.e. its constituent odorant molecules and their mixing ratios, are encoded into a spatio-temporal pattern of neural activity in the olfactory bulb, where the activity pattern corresponds to a limit cycle attractor in the mitral cell network. The spatio-temporal pattern consists of a temporal sequence of spatial firing patterns: each constituent molecule is encoded into a single spatial pattern, and the order of magnitude of the mixing ratio is encoded into the temporal sequence. The formation of a limit cycle attractor under the application of a novel odor is carried out based on the intensity-to-time-delay encoding scheme. The dynamic state of the olfactory bulb, which has learned many odors, becomes a randomly itinerant state in which the current firing state of the bulb itinerates randomly among limit cycle attractors corresponding to the learned odors. The recognition of an odor is generated by the dynamic transition in the network from the randomly itinerant state to a limit cycle attractor state relevant to the odor, where the transition is induced by the short-term synaptic changes made according to the Hebbian rule under the application of the odor stimulus. Received: 28 July 1997 / Accepted in revised form: 6 May 1998  相似文献   

10.
Generating Boolean networks with a prescribed attractor structure   总被引:2,自引:0,他引:2  
MOTIVATION: Dynamical modeling of gene regulation via network models constitutes a key problem for genomics. The long-run characteristics of a dynamical system are critical and their determination is a primary aspect of system analysis. In the other direction, system synthesis involves constructing a network possessing a given set of properties. This constitutes the inverse problem. Generally, the inverse problem is ill-posed, meaning there will be many networks, or perhaps none, possessing the desired properties. Relative to long-run behavior, we may wish to construct networks possessing a desirable steady-state distribution. This paper addresses the long-run inverse problem pertaining to Boolean networks (BNs). RESULTS: The long-run behavior of a BN is characterized by its attractors. The rest of the state transition diagram is partitioned into level sets, the j-th level set being composed of all states that transition to one of the attractor states in exactly j transitions. We present two algorithms for the attractor inverse problem. The attractors are specified, and the sizes of the predictor sets and the number of levels are constrained. Algorithm complexity and performance are analyzed. The algorithmic solutions have immediate application. Under the assumption that sampling is from the steady state, a basic criterion for checking the validity of a designed network is that there should be concordance between the attractor states of the model and the data states. This criterion can be used to test a design algorithm: randomly select a set of states to be used as data states; generate a BN possessing the selected states as attractors, perhaps with some added requirements such as constraints on the number of predictors and the level structure; apply the design algorithm; and check the concordance between the attractor states of the designed network and the data states. AVAILABILITY: The software and supplementary material is available at http://gsp.tamu.edu/Publications/BNs/bn.htm  相似文献   

11.
Cellular life can be viewed as one of many physical natural systems that extract free energy from their environments in the most efficient way, according to fundamental physical laws, and grow until limited by inherent physical constraints. Thus, it can be inferred that it is the efficiency of this process that natural selection acts upon. The consequent emphasis on metabolism, rather than replication, points to a metabolism-first origin of life with the adoption of DNA template replication as a second stage development. This order of events implies a cellular regulatory system that pre-dates the involvement of DNA and might, therefore, be based on the information acquired as peptides fold into proteins, rather than on genetic regulatory networks. Such an epigenetic cell regulatory model, the independent attractor model, has already been proposed to explain the phenomenon of radiation induced genomic instability. Here it is extended to provide an epigenetic basis for the morphological and functional diversity that evolution has yielded, based on natural selection of the most efficient free energy transduction. Empirical evidence which challenges the current genetic basis of cell and molecular biology and which supports the above proposal is discussed.  相似文献   

12.
Hebbian cell assemblies provide a theoretical framework for the modeling of cognitive processes that grounds them in the underlying physiological neural circuits. Recently we have presented an extension of cell assemblies by operational components which allows to model aspects of language, rules, and complex behaviour. In the present work we study the generation of syntactic sequences using operational cell assemblies timed by unspecific trigger signals. Syntactic patterns are implemented in terms of hetero-associative transition graphs in attractor networks which cause a directed flow of activity through the neural state space. We provide regimes for parameters that enable an unspecific excitatory control signal to switch reliably between attractors in accordance with the implemented syntactic rules. If several target attractors are possible in a given state, noise in the system in conjunction with a winner-takes-all mechanism can randomly choose a target. Disambiguation can also be guided by context signals or specific additional external signals. Given a permanently elevated level of external excitation the model can enter an autonomous mode, where it generates temporal grammatical patterns continuously.  相似文献   

13.
14.
The organised state of living cells must derive from information internal to the system; however, there are strong reasons, based on sound evidence, to reject the base sequence information encoded in the genomic DNA as being directly relevant to the regulation of cellular phenotype. Rather, it is argued here that highly specific relational information, encoded on the gene products, mainly proteins, is responsible for phenotype. This regulatory information emerges as the peptide folds into a tertiary structure in much the same way as enzymic activity emerges under the same circumstances. The DNA coding sequence serves as a “data base” in which a second category of relational information is stored to enable accurate reproduction of the cellular peptides. In the context of the cell, therefore, information is physical in character and contributes, through its ability to dissipate free energy, to the maximisation of the entropy of the cell according to the 2nd law of thermodynamics.  相似文献   

15.
It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits.  相似文献   

16.
The prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior by representing task relevant information with its working memory. The working memory with sustained neural activity is described as a neural dynamical system composed of multiple attractors, each attractor of which corresponds to an active state of a cell assembly, representing a fragment of information. Recent studies have revealed that the PFC not only represents multiple sets of information but also switches multiple representations and transforms a set of information to another set depending on a given task context. This representational switching between different sets of information is possibly generated endogenously by flexible network dynamics but details of underlying mechanisms are unclear. Here we propose a dynamically reorganizable attractor network model based on certain internal changes in synaptic connectivity, or short-term plasticity. We construct a network model based on a spiking neuron model with dynamical synapses, which can qualitatively reproduce experimentally demonstrated representational switching in the PFC when a monkey was performing a goal-oriented action-planning task. The model holds multiple sets of information that are required for action planning before and after representational switching by reconfiguration of functional cell assemblies. Furthermore, we analyzed population dynamics of this model with a mean field model and show that the changes in cell assemblies' configuration correspond to those in attractor structure that can be viewed as a bifurcation process of the dynamical system. This dynamical reorganization of a neural network could be a key to uncovering the mechanism of flexible information processing in the PFC.  相似文献   

17.
18.
Ecosystems sometimes shift between different states or dynamic regimes. Theory attributes these shifts to multiple ecosystem attractors. However, documenting multiple ecosystem attractors is difficult, particularly at spatial and temporal scales relevant to ecosystem management. We manipulated the fish community of a lake with the goal of causing trophic cascades and shifting the food web from a planktivore-dominated state to an alternate piscivore-dominated state. We evaluated evidence that the shifts in the fish community comprise alternate attractors using two complementary approaches. First, we calculated phase space trajectories to visualize the shift between attractors. Second, we computed generalized autoregressive conditional heteroskedasticity (GARCH) models and the Brock–Dechert–Scheinkman (BDS) test for linearity. The reconstructed phase space trajectories show the system departing a point attractor, entering a limit cycle, and then shifting to a new point attractor. The GARCH and BDS results indicate that linear explanations are not sufficient to explain the observed patterns. The results provide evidence for alternate attractors based on high-frequency time series of field measurements.  相似文献   

19.
Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号