首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.  相似文献   

3.
This study investigated the minute distribution of both proliferating and non-proliferating cells, and cell death in the developing mouse lower first molars using 5-bromo-2-deoxyuridine (BrdU) incorporation and the terminal deoxynucleotidyl transferase-mediated deoxyuridine-5-triphosphate (dUTP)-biotin nick end labeling (TUNEL) double-staining technique. The distribution pattern of the TUNEL-positive cells was more notable than that of the BrdU-positive cells. TUNEL-positive cells were localized in the following six sites: (1) in the most superficial layer of the dental epithelium during the initiation stage, (2) in the dental lamina throughout the period during which tooth germs grow after bud formation, (3) in the dental epithelium in the most anterior part of the antero-posterior axis of the tooth germ after bud formation, (4) in the primary enamel knot from the late bud stage to the late cap stage, (5) in the secondary enamel knots from the late cap stage to the late bell stage, and (6) in the stellate reticulum around the tips of the prospective cusps after the early bell stage. These peculiar distributions of TUNEL-positive cells seemed to have some effect on either the determination of the exact position of the tooth germ in the mandible or on the complicated morphogenesis of the cusps. The distribution of BrdU-negative cells was closely associated with TUNEL-positive cells, which thus suggested cell arrest and the cell death to be essential for the tooth morphogenesis.  相似文献   

4.
5.
During molar development from the cap to bell stage, the morphology of the enamel knots, inner dental epithelium, and epithelial-mesenchymal junction dynamically changes, leading to the formation of multiple cusps. To study the basic histological features of this morphogenetic change, we have investigated the cell arrangement, mitosis, and apoptosis simultaneously in the developing first lower molar of the mouse by means of BrdU injection and immunostaining for P-cadherin, BrdU, and single-stranded DNA. At the typical cap stage, the primary enamel knot shows a characteristic cell arrangement, absence of mitosis, and abundant apoptosis, but also actively dividing cells at its lateral margins. Two secondary enamel knots then appear in the anterior part of the tooth germ. One is completely non-proliferating, whereas the other contains dividing cells, indicating asymmetrical growth of the inner dental epithelium. From this transitional stage to the early bell stage, additional minor BrdU-negative domains appear, and at the same time, the cell arrangement in the inner dental epithelium rapidly changes to show regional differences. Comparisons between the histology and the distribution of BrdU-positive cells have revealed that both the regionally different cell rearrangement and the differential cell proliferation in the enamel knots and inner dental epithelium probably play a significant role in multiple cusp formation.  相似文献   

6.
The patterning cascade model of tooth morphogenesis has emerged as a useful tool in explaining how tooth shape develops and how tooth evolution may occur. Enamel knots, specialized areas of dental epithelium where cusps initiate, act as signaling centers that direct the growth of surrounding tissues. For a new cusp to form, an enamel knot must form beyond the inhibition fields of other enamel knots. The model predicts that the number and size of cusps depends on the spacing between enamel knots, reflected in the spacing between cusps. Recently, work by our group demonstrated that the model predicted Carabelli trait expression in human first molars. Here we test whether differences in Carabelli trait expression along the molar row can also be predicted by the model. Crown areas and intercusp distances were measured from dental casts of 316 individuals with a digital microscope. Although absolute cusp spacing is similar in first and second molars, the smaller size and more triangular shape of second molars results in larger cusp spacing relative to size and, likely, less opportunity for the Carabelli trait to form. The presence and size of the hypocone (HY) and a range of small accessory cusps in a larger sample of 340 individuals were also found to covary with the Carabelli trait in a complex way. The results of this study lend further support to the view that the dentition develops, varies, and evolves as a single functional complex. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.  相似文献   

8.
Reiterative signaling and patterning during mammalian tooth morphogenesis   总被引:47,自引:0,他引:47  
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.  相似文献   

9.
Ko SO  Kim TH  Lee HK  Lee JC  Cho ES 《Life sciences》2007,81(15):1235-1240
Acetylcholinesterase (AChE), a principal modulator of cholinergic neurotransmission, also has been demonstrated to be involved in the morphogenetic processes of neuronal and non-neuronal tissues. This study shows that AChE exhibits temporospatial activity in the dental epithelium of the developing mouse tooth. To identify the AChE activity in the mouse tooth during development, we performed enzyme histochemistry on the mouse embryos from embryonic day 13 (E13) to E18 and on the incisors and molars of the neonatal mouse at 10 days after birth (P10). In the developing molars of mouse embryos, AChE activity was not found in the dental epithelium at E13 (bud stage). AChE activity first appeared in the developing cervical loops of the enamel organ at E14 (cap stage), but was not found in the enamel knot. At E18 (bell stage), AChE activity was localized in the inner enamel epithelium except the cervical-loop area. In the incisors and molars of neonatal mice (P10), AChE activity was localized in the inner enamel epithelium of the cervical-loop and enamel-free area. Overall, AChE activity was localized in the differentiating dental epithelium while the activity of butyrylcholinesterse, another cholinesterase, was located primarily in the cells of the dental follicle. The results suggest that AChE may play a role in the histo- and cytodifferentiation of dental epithelium during tooth development.  相似文献   

10.
The enamel knot (EK), which is located in the center of bud and cap stage tooth germs, is a transitory cluster of non-dividing epithelial cells. The EK acts as a signaling center that provides positional information for tooth morphogenesis and regulates the growth of tooth cusps by inducing secondary EKs. The morphological, cellular, and molecular events leading to the relationship between the primary and secondary EKs have not been described clearly. This study investigated the relationship between the primary and secondary EKs in the maxillary and mandibular first molars of mice. The location of the primary EK and secondary EKs was investigated by chasing Fgf4 expression patterns in tooth germ at some intervals of in vitro culture, and the relationship between the primary EK and secondary EK was examined by tracing the primary EK cells in the E13.5 tooth germs which were frontally half sliced to expose the primary EK. After 48 hr, the primary EK cells in the sliced tooth germs were located on the buccal secondary EKs, which correspond to the future paracone in maxilla and protoconid in mandible. The Bmp4 expression in buccal part of the dental mesenchyme might be related with the lower growth in buccal epithelium than in lingual epithelium, and the Msx2 expressing area in epithelium was overlapped with the enamel cord (or septum) and cell dense area. The enamel cord might connect the primary EK with enamel navel to fix the location of the primary EK in the buccal side during the cap to bell stages. Overall, these results suggest that primary EK cells strictly contribute to form the paracone or protoconid, which are the main cusps of the tooth in the maxilla or mandible.  相似文献   

11.
The molecular and developmental factors that regulate tooth morphogenesis in nonmammalian species, such as snakes and lizards, have received relatively little attention compared to mammals. Here we describe the development of unicuspid and bicuspid teeth in squamate species. The simple, cone-shaped tooth crown of the bearded dragon and ball python is established at cap stage and fixed in shape by the differentiation of cells and the secretion of dental matrices. Enamel production, as demonstrated by amelogenin expression, occurs relatively earlier in squamate teeth than in mouse molars. We suggest that the early differentiation in squamate unicuspid teeth at cap stage correlates with a more rudimentary tooth crown shape. The leopard gecko can form a bicuspid tooth crown despite the early onset of differentiation. Cusp formation in the gecko does not occur by the folding of the inner enamel epithelium, as in the mouse molar, but by the differential secretion of enamel. Ameloblasts forming the enamel epithelial bulge, a central swelling of cells in the inner enamel epithelium, secrete amelogenin at cap stage, but cease to do so by bell stage. Meanwhile, other ameloblasts in the inner enamel epithelium continue to secrete enamel, forming cusp tips on either side of the bulge. Bulge cells specifically express the gene Bmp2, which we suggest serves as a pro-differentiation signal for cells of the gecko enamel organ. In this regard, the enamel epithelial bulge of the gecko may be more functionally analogous to the secondary enamel knot of mammals than the primary enamel knot.  相似文献   

12.
First lower E-14 and E-16 mouse molars and E-13 lower incisors were cultured in vitro and either sequentially or continuously labelled with BrdU (5-bromo-2'-deoxyuridine). The behaviour of the non-cycling inner dental epithelial cells emerging from the enamel knot area of the molars was analysed by 3D (three dimensional) reconstructions of serial sections. These cells, as well as slow cycling cells underwent a coordinated temporo-spatial patterning leading to their patchy segregation at the tips of the forming cusps. In incisors (in vitro and in vivo), non-cycling cells were also present in the inner dental epithelium of the enamel knot area. However, these cells were not redistributed during incisor morphogenesis. These non-dividing inner dental epithelium cells of the enamel knot area which are either redistributed or not according to the tooth type specific morphogenesis might represent the organizers of morphogenetic units (OMU), the cusps.  相似文献   

13.
The Msx2-interacting nuclear target protein (MINT) is a nuclear matrix protein that regulates the development of many tissues. However, little is known regarding the role of MINT in tooth development. In this study, we prepared polyclonal antibodies against MINT, and found that that MINT was expressed in different cells at each stage of tooth germ development by immunohistochemistry. The role of MINT in tooth development was further illustrated by the misshapen and severely hypoplastic tooth organ in the cultured mandibular explants of MINT deficient mice. From the initiation to cap stage, the differences between mutants and wild-type molars were more and more distinguished histologically. In the MINT-deficient mandibular explants, the tooth germ was reduced in the overall size and lacked enamel knot, with abnormal dental lamina and collapsed stellate reticulum. Furthermore, the BrdU incorporation experiment showed that the proliferation activity was significantly reduced in MINT-deficient dental epithelium. Our results suggest that MINT plays an important role in tooth development, in particular, epithelial morphogenesis.  相似文献   

14.
15.

Background

The patterning cascade model of tooth morphogenesis accounts for shape development through the interaction of a small number of genes. In the model, gene expression both directs development and is controlled by the shape of developing teeth. Enamel knots (zones of nonproliferating epithelium) mark the future sites of cusps. In order to form, a new enamel knot must escape the inhibitory fields surrounding other enamel knots before crown components become spatially fixed as morphogenesis ceases. Because cusp location on a fully formed tooth reflects enamel knot placement and tooth size is limited by the cessation of morphogenesis, the model predicts that cusp expression varies with intercusp spacing relative to tooth size. Although previous studies in humans have supported the model''s implications, here we directly test the model''s predictions for the expression, size, and symmetry of Carabelli cusp, a variation present in many human populations.

Methodology/Principal Findings

In a dental cast sample of upper first molars (M1s) (187 rights, 189 lefts, and 185 antimeric pairs), we measured tooth area and intercusp distances with a Hirox digital microscope. We assessed Carabelli expression quantitatively as an area in a subsample and qualitatively using two typological schemes in the full sample. As predicted, low relative intercusp distance is associated with Carabelli expression in both right and left samples using either qualitative or quantitative measures. Furthermore, asymmetry in Carabelli area is associated with asymmetry in relative intercusp spacing.

Conclusions/Significance

These findings support the model''s predictions for Carabelli cusp expression both across and within individuals. By comparing right-left pairs of the same individual, our data show that small variations in developmental timing or spacing of enamel knots can influence cusp pattern independently of genotype. Our findings suggest that during evolution new cusps may first appear as a result of small changes in the spacing of enamel knots relative to crown size.  相似文献   

16.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

17.
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.  相似文献   

18.
Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 and Dlx2 but neither Fgf3 nor syndecan-1 in the Msx1 mutant molar tooth germ. The mutant phenotype of molar but not incisor could be partially rescued to progress to the cap stage. The Msx1-Bmp4 transgene was also able to rescue the alveolar processes and the neonatal lethality of the Msx1 mutants. In contrast, overexpression of Bmp4 in the wild type molar mesenchyme down-regulated Shh and Bmp2 expression in the enamel knot, the putative signaling center for tooth patterning, but did not produce a tooth phenotype. These results indicate that Bmp4 can bypass Msx1 function to partially rescue molar tooth development in vivo, and to support alveolar process formation. Expression of Shh and Bmp2 in the enamel knot may not represent critical signals for tooth patterning.  相似文献   

19.
Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.  相似文献   

20.
Apoptosis represents an important process in organ and tissue morphogenesis and remodeling during embryonic development. A role for apoptosis in shape formation of developing teeth has been suggested. The field vole is a useful model for comparative studies in odontogenesis, particularly because of its contrasting molar morphogenesis when compared to the mouse. However, little is known concerning apoptosis in tooth development of this species. Morphological (cellular and nuclear alterations) and biochemical (specific DNA breaks--TUNEL staining) characteristics of apoptotic cells were used to evaluate the temporal and spatial occurrence of apoptosis in epithelial and mesenchymal tissues of the developing first molar tooth germs of the field vole. Apoptotic cells were found in non-proliferating areas (identified previously) throughout bud to bell stages, particularly in the epithelium, however, scattered also in the mesenchyme. A high concentration of TUNEL positive cells was evident in primary enamel knots at late bud stage with increasing density of apoptotic cells until ED 16 when the primary enamel knot in the field vole disappears and mesenchyme becomes protruded in the middle axes of the bell forming two shallow areas with zig-zag located secondary enamel knots. Distribution of TUNEL positive cells corresponded with localisation of secondary enamel knots as shown using histological and 3D analysis. Apoptosis was shown to be involved in the first molar development of the field vole, however, exact mechanisms and roles of this process in tooth morphogenesis require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号