首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
心房钠尿肽的中枢性心血管和肾效应   总被引:1,自引:1,他引:0  
赵工  骆鸿 《生理学报》1991,43(6):537-547
在麻醉大鼠观察了颈动脉、脊髓蛛网膜下腔和侧脑室内注射心房钠尿肽(Atrial natri-uretic peptide,ANP)后,血压,心率或/和尿量、尿钠和尿钾的变化,并观察了 ANP 对血管紧张素Ⅱ(AGⅡ)中枢效应的影响。结果如下:(1)在大鼠头部交叉循环条件下,经受血鼠颈总动脉内注射α-人心房钠尿多肽(α-human atrial natriurctic polypeptide,α-hANP)(15μg/kg)后,受血鼠平均动脉压(MAP)无改变,而供血鼠的 MAP 降低,⊿MAP为-2.4±0.84kPa(-18±6.3mmHg,P<0.05),(2)脊髓蛛网膜下腔注射心房肽,Ⅱ(AtriopeptinⅡ,APⅡ)(5μg/kg)对血压、心率和尿量无明显影响;(3)侧脑室注射 APⅡ(20μg/kg)后血压和心率无显著改变,尿量仅在注射后第30至50min 时显著增加,而尿钠无改变;(4)侧脑室注射 AGⅡ(1μg/kg),血压升高,⊿MAP 为1.3±0.17kPa(10±1.3mmHg,n=10,P<0.001)。注射1h 后,尿量增加106%(P<0.01),尿钠增加642%(P<0.01);(5)事先侧脑室注射 APⅡ(20μg/kg),2min 后再注入 AGⅡ(1μg/kg),AGⅡ的中枢升压效应不受影响,⊿MAP为1.5±0.25kPa(11±1.9mmHg,n=7,P<0.01),而尿量和尿钠的增值明显减小。以上结果表明,ANP 难于透过血脑脑脊血屏障,可能与其分子量较大有关。在静脉注射 ANP 所致降压效应中,似无中枢机制的参与。ANP 对 AGⅡ  相似文献   

2.
Buyukcoskun NI  Gulec G  Ozluk K 《Peptides》2001,22(9):1415-1420
Participation of central cholinergic system in the effects of intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) on blood pressure and heart rate was studied in conscious, freely moving rats. Ang II dose-dependently increased blood pressure and decreased heart rate. Both atropine and mecamylamine (i.c.v.) pretreatments prevented the cardiovascular effects of Ang II. Pretreatment with a vasopressin V1 antagonist also prevented the cardiovascular responses to Ang II. Our data suggest that the central pressor effect of Ang II is mediated in part by central acetylcholine via both muscarinic and nicotinic receptors, and vasopressin participates in this effect through V1 receptors.  相似文献   

3.
The effect of the intracerebroventricular (i.c.v.) injection of hypertonic sodium chloride on plasma atrial natriuretic peptide (ANP) and oxytocin (OT) was evaluated in conscious freely moving rats. A hypertonic or isotonic NaCl solution was injected into the third ventricle. Blood pressure and heart rate were monitored and blood samples were collected. I.c.v. injection of the hypertonic solution resulted in a significant increase in mean arterial pressure (105.3 +/- 2.9 mmHg at time 0 to 124.2 +/- 4.4 mmHg at 5 min, P less than 0.01) and heart rate (350.0 +/- 25.0 bpm at time 0 to 420.8 +/- 13.6 bpm at 20 min, P less than 0.01). Plasma OT increased 4-fold over the basal values 5 min after the injection (4.5 +/- 1.1 to 20.1 +/- 3.2 pg/ml, P less than 0.01), while there was no significant change in plasma ANP (37.3 +/- 9.1 to 46.6 +/- 12.6 pg/ml, n.s.). The control injection produced no significant changes in any parameters. These results show that hemodynamic changes are not necessarily associated with alterations in plasma ANP. Furthermore they suggest that central osmoreceptors are not involved in the control of ANP secretion.  相似文献   

4.
《Life sciences》1995,58(5):437-445
Intracerebroventricular (i.c.v.) injection of endothelin-1 (ET-1; 100 ng, i.c.v.) produced an initial pressor (24%) (peak at 3 min following ET-1 administration) and a delayed depressor (−40%) (30 and 60 min following ET-1 administration) effects in urethane anesthetized rats. The pressor effect of ET-1 was due to an increase (21%) in cardiac output, while the depressor effect of ET-1 was associated with a marked decrease (−46%) in cardiac output. Stroke volume significantly decreased at 30 and 60 min after the administration of ET-1. No change in total peripheral vascular resistance and heart rate was observed following central administration of ET-1. The effects of ET-1 on blood pressure, cardiac output and stroke volume were not observed in BQ123 (10 μg, i.c.v.) treated rats. Blood flow to the cerebral hemispheres, cerebellum, midbrain and brain stem was not affected at 3 min, but a significant decrease in blood flow to all the regions of the brain was observed at 30 and 60 min following central administration of ET-1. BQ123 pretreatment completely blocked the central ET-1 induced decrease in blood flow to the brain regions. It is concluded that the pressor effect of centrally administered ET-1 is not accompanied by a severe decrease in brain blood flow, however, a subsequent decrease in blood pressure is associated with a decrease in blood flow to the brain. The cardiovascular effects of ET-1 including decrease in brain blood flow are mediated through central ETA receptors.  相似文献   

5.
C Okuda  T Mizobe  M Miyazaki 《Life sciences》1987,40(13):1293-1299
Intracerebroventricular (i.c.v.) administration of thyrotropin-releasing hormone (TRH) in a range from 0.1 to 100 micrograms induced a dose-related increase in blood pressure in conscious rats, whereas TRH-free acid (TRH-OH) and histidyl-proline diketopiperazine (His-Pro-DKP), metabolites of TRH, did not. The blood pressure responses to intravenous (i.v.) injection of 5 mg/Kg TRH were similar to those induced by TRH (i.c.v.). Pretreatment with atropine (50 micrograms, i.c.v.) significantly reduced the pressor effect of TRH administered through either route. Hemicholinium-3 (50 micrograms, i.c.v.), an inhibitor of choline uptake, also prevented the increase in blood pressure induced by TRH (10 micrograms, i.c.v.). These results indicate that both centrally and peripherally administered TRH have pressor effects that are mediated by central cholinergic mechanisms, probably by activating cholinergic neurons.  相似文献   

6.
Atrial natriuretic peptide (ANP) is a hormone secreted in response to atrial or ventricular volume expansion and pressure overload, respectively. However, it has been found in studies with animals and patients an increase in ANP plasma concentration, during advanced septic shock, despite the fall in mean arterial pressure (MAP).

Several studies support the hypothesis that NO may be involved in the regulation of ANP release. Since NO may have an effect on ANP release, we hypothesized that NO pathway may participate in the control of the ANP release induced by the endotoxemic shock. Thus, the purpose of the present study was to assess the effect of the intravenous (i.v.) and intracereboventricular (i.c.v.) administration of aminoguanidine, an iNOS blocker, on plasma ANP levels and MAP during experimental endotoxemic shock.

Experiments were performed on adult male Wistar rats weighing 180–240 g. Rats were injected i.v. by bolus injection with 1.5 mg/kg of Lipopolysaccharide (LPS) or saline (0.5 mL) and were decapitated 2, 4 and 6 h after LPS injection for ANP determination by radioimmunoassay. In a separate set of experiments, rats received intravenous (i.v.) (100 mg/kg) or intracerebroventricular (i.c.v.) (250 μg in a final volume of 2 μL) injection of aminoguanidine (AG). Thirty minutes after the i.c.v. or i.v. injections, animals received LPS and were decapitated 2, 4 and 6 h later to determine plasma ANP concentration. In the two set of experiments MAP and heart rate (HR) were measured each 15 min for a period of 6 h using a polygraph.

When animals were injected with LPS, a reduction (p < 0.01) in MPA and an increase in HR occurred. A significant increase in plasma ANP concentration occurred, coinciding with the period of drop in blood pressure.

We found a significant increase in plasma ANP concentration after AG plus LPS injection, when compared to the rats treated with LPS plus saline. Further, the administration of AG plus LPS attenuated the decrease in the MAP after LPS and attenuated the increase in the HR when compared to the rats treated with LPS plus saline.

Our study suggests that inducible NOS pathway may activate an inhibitory control mechanism that attenuates ANP secretion, which is not regulated by the changes in blood pressure.  相似文献   


7.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

8.
Vascular and diuretic actions of synthetic alpha-human atrial natriuretic polypeptide (alpha-hANP) were studied using anesthetized dogs and isolated canine arterial strip preparations. alpha-hANP, when given intra-arterially or intravenously, dilated the renal artery more selectively than the vertebral, femoral, common carotid and coronary arteries. alpha-hANP selectively relaxed the high K+-contracted renal artery strip as compared with the basilar, coronary and femoral arterial strips. Intravenous alpha-hANP also increased urine volume and urinary excretion of electrolytes at doses, at which it increased renal blood flow and lowered systemic blood pressure without changing heart rate. It is concluded that alpha-hANP has a vasodilatory property relatively specific for the renal artery, and that it possesses diuretic, natriuretic, kaliuretic, magnesiuretic, calciuretic and chloruretic activities concomitantly with a definite hypotensive activity.  相似文献   

9.
To elucidate the involvement of the brain renin-angiotensin system and the brain atrial natriuretic polypeptide (ANP) system in the regulation of ANP secretion from the heart, the effects of intracerebroventricular administration of angiotensin II and ANP on the plasma ANP level were examined in conscious unrestrained rats. The intracerebroventricular administration of angiotensin II at doses of 100 ng and 1 microgram significantly enhanced ANP secretion induced by volume-loading with 3-mL saline infusion (peak values of the plasma ANP level: control, 220 +/- 57 pg/mL; 100 ng angiotensin II, 1110 +/- 320 pg/mL, p less than 0.01; 1 microgram angiotensin II, 1055 +/- 60 pg/mL, p less than 0.01). The intracerebroventricular injection of angiotensin II at the same doses alone had no significant effect on the basal plasma ANP level. The enhancing effect of central angiotensin II on ANP secretion induced by volume-loading was significantly attenuated by pretreatment with the intravenous administration of the V1-receptor antagonist of vasopressin or with the intracerebroventricular administration of phentolamine. The intracerebroventricular administration of alpha-rANP(4-28) (5 micrograms) had no significant influence on the basal plasma ANP level; however, it significantly attenuated central angiotensin II potentiating effect of volume-loading induced ANP secretion. These results indicate that the brain renin-angiotensin system regulates ANP secretion via the stimulation of vasopressin secretion and (or) via the activation of the central alpha-adrenergic neural pathway, and that the brain ANP system interacts with the brain renin-angiotensin system in the central modulation of ANP secretion from the heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Studies were performed in conscious and anesthetized Sprague-Dawley rats to examine whether the cardiovascular responses to intracerebroventricular (i.c.v.) administration of corticotropin-releasing factor (CRF) required concomitant locomotor activation. I.c.v. administration of CRF to conscious animals elicited significant increases in arterial pressure, heart rate, mesenteric resistance, and iliac blood flow, as well as intermittent locomotor, grooming and chewing activity. Intravenous infusion of the anesthetic agent, Saffan, at the minimal dose required to abolish locomotor activity caused slight but significant elevations of heart rate and mesenteric vascular resistance. I.c.v. administration of CRF to anesthetized animals produced delayed, yet significant and sustained increases in the heart rate and arterial pressure, without altering regional blood flow. These results demonstrate that locomotor activation is not requisite for the expression of CRF-induced pressor and tachycardic responses. It is concluded that CRF acts within the central nervous system to influence cardiovascular function in the absence of locomotor activity.  相似文献   

11.
C Okuda  H Tanaka  M Miyazaki 《Life sciences》1988,42(11):1181-1188
Changes in the concentration of thyrotropin-releasing hormone (TRH) in cerebrospinal fluid (CSF) were examined by the push-pull perfusion method after intravenous (i.v.) administration of the peptide in conscious and pentobarbital-anesthetized rats. The concentration of endogenous TRH in the perfusate was not changed during the 160-min perfusion period and was similar to that in the CSF (0.92 +/- 0.26 ng/ml) collected before the perfusion in conscious as well as in anesthetized rats. After i.v. administration of TRH (5 mg/kg) to the conscious rats, the peptide concentration in the perfusate increased to 42.23 +/- 14.33 ng/ml during the first 20 min and gradually returned to the basal level 2 hr after administration. The total amount of TRH detected in the perfusate was 20.0 ng. It was reduced by 75% in the anesthetized animals. The increases in blood pressure and heart rate, seen after i.v. as well as intracerebroventricular administration of TRH in the conscious rats, was significantly inhibited in the anesthetized rats. These results indicate that systemically administered TRH exerts its cardiovascular effect at central site(s), and that the transportation and the effect of the peptide is suppressed by pentobarbital anesthesia.  相似文献   

12.
Effects of four doses (0.1, 0.2, 1.0 and 2.0 nmol/kg) of brain natriuretic peptide (BNP) on natriuresis and blood pressure were investigated in anesthetized spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). An intravenous injection of 1.0 and 2.0 nmol/kg of BNP caused a significant increase of natriuresis and reduction of blood pressure in SHR and WKY. These effects were essentially identical to the effects of atrial natriuretic peptide (ANP). Remarkable bioactivity elicited by BNP rasises the possibility that BNP has a role in the regulation of blood pressure and water-electrolyte balance. On the other hand, when the effects of BNP on both strains of rats were compared with those of alpha-human ANP reported previously, the hypotensive effect of BNP was less than those of alpha-human ANP only in SHR. It is suggested that BNP might have different bioactivity than that of ANP in SHR.  相似文献   

13.
The aim of the current study was to determine the central cyclooxygenase (COX) pathway and central thromboxane signaling in the cardiovascular effects evoked by arachidonic acid (AA). As a main control for the study, different doses of AA (75, 150, or 300?μg) were administered intracerebroventricularly (i.c.v.). Centrally injected AA dose- and time-dependently increased mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. The maximal cardiovascular effects of AA were observed at min 10 of the injection and lasted almost 30?min. To investigate the central mechanism of the AA-induced cardiovascular effect in conscious normotensive animals, pretreatment with nonselective COX inhibitor indomethacin (200?μg; i.c.v.), thromboxane A2 (TXA2) synthesis inhibitor furegrelate (250 or 500?μg; i.c.v.), or TXA2 receptor antagonist SQ-29548 (8 or 16?μg; i.c.v.) was carried out 15?min before AA (150?μg; i.c.v.) injection. While indomethacin completely prevented the pressor and bradycardic responses to AA, furegrelate and SQ-29548 attenuated these effects in part in awake normotensive rats. In conclusion, these findings suggest that the pressor and bradycardic cardiovascular effects of centrally injected AA are dependent on COX activity being totally central and the TXA2 signaling pathway being subsequently central, at least in part.  相似文献   

14.
Cardiovascular effects of intravenous (i.v.) treatment with methyleugenol (ME), a natural constituent of many plant essential oils, were investigated in normotensive rats. Additionally this study examined (I) whether the autonomic nervous system is involved in the mediation of ME-induced changes in mean aortic pressure (MAP) and heart rate (HR), and (II) whether the hypotensive effects of ME could result from its vasodilatory effects directly upon vascular smooth muscle. In both pentobarbital-anesthetized and conscious rats, i.v. bolus injections of ME (1 to 10 mg/kg) elicited similar and dose-dependent decreases in MAP. In anesthetized rats, ME decreased HR only at the highest dose (10 mg/kg), while changes of this parameter were not uniform in conscious rats. Pretreatment of anesthetized rats with bilateral vagotomy significantly reduced the bradycardia response to ME (10 mg/kg) without affecting the hypotension. In conscious rats, i.v. pretreatment with methylatropine (1 mg/kg) or hexamethonium (30 mg/kg) had no significant effect on ME-induced hypotension. In rat isolated thoracic aorta preparations, ME (0.006-1.68 mM) induced a concentration-dependent reduction of potassium (60 mM)-induced contraction. This is the first physiological evidence that i.v. treatment with ME in either anesthetized or conscious rats elicits hypotension; an effect that seems related to an active vascular relaxation rather than withdrawal of sympathetic tone.  相似文献   

15.
Experiments were performed to compare the possible effect of endogenous arginine vasopressin on renal hemodynamics between anesthetized, surgically stressed rats and conscious rats. Animals were instrumented with arterial and venous catheters as well as with a pulsed Doppler flow probe on the left renal artery. The rats were studied under the following conditions: (1) conscious and unrestrained; (2) anesthetized only; (3) anesthetized with minor surgical stress; and (4) anesthetized with major surgical stress. Two anesthetic agents were also compared, a mixture of ketamine (110 mg/kg i.m.) and acepromazine (1 mg/kg i.m.), and sodium pentobarbital (50 mg/kg i.p.). Baseline mean arterial blood pressure was significantly higher in pentobarbital-anesthetized rats following surgical stress compared with conscious animals, but blood pressure was not affected by ketamine-acepromazine anesthesia. After baseline measurements of blood pressure, heart rate, and renal blood flow, a specific V1-vasopressinergic antagonist (d(CH2)5Tyr(Me) arginine vasopressin, 10 mg/kg i.v.) was administered to each group. Mean arterial blood pressure, heart rate, and renal blood flow were monitored for an additional 15 min. Mean arterial blood pressure and renal blood flow decreased after V1 antagonism in ketamine-acepromazine-anesthetized rats with major surgical stress, but were not affected in pentobarbital-anesthetized animals. Heart rate and renal vascular resistance were not affected following V1 blockade with either anesthetic agent. These data suggest that arginine vasopressin plays a role in maintaining blood pressure and renal perfusion in ketamine-acepromazine-anesthetized rats following surgical stress, but does not have a significant effect on renal hemodynamics under pentobarbital anesthesia.  相似文献   

16.
Experiments were designed to determine the hemodynamic responses of conscious, unrestrained rats given intracerebroventricular (i.c.v.) injections of dynorphin A-(1-13) and the possible central receptor mechanisms mediating those changes. Male Sprague-Dawley rats (300 gb. wt.) received i.c.v. injections (by gravity flow in a total volume of 3 or 5 microliter) of control solutions of sterile saline (SS) or dimethylsulfoxide (DMSO) or 1.5, 3.0 or 6.1 nmol of dynorphin A-(1-13). Blood pressure and heart rate changes were monitored over 2 h after administration; as well, feeding activity was visually assessed and scored over this period. Other groups of conscious rats were pretreated i.c.v. with equimolar doses (3.0-24.4 nmol) of specific receptor antagonists (naloxone HCl, phentolamine HCl, propranolol HCl, yohimbine HCl or prazosin HCl) 10 min before subsequent i.c.v. administration of SS or DMSO/SS or 6.1 nmol of dynorphin A-(1-13). I.c.v. injection of dynorphin A-(1-13) caused a dose-related pressor response, associated temporally with tachycardia. As well, dynorphin evoked feeding activity and some grooming, which occurred when the rats were hypertensive and tachycardic and decreased as heart rate and blood pressure returned to control levels. I.c.v. pretreatment studies indicated that naloxone HCl (12.2 nmol), phentolamine HCl (12.2 nmol) and prazosin HCl (6.1 nmol) blocked the pressor response, tachycardia as well as feeding activity of rats subsequently given dynorphin. The results suggest the pressor and tachycardic effects of conscious rats following i.c.v. dynorphin administration may, in part, be due to behavioral activation (feeding). As well, these data indicate that both opioid as well as alpha 1-adrenergic receptors within the CNS are involved in mediating the pressor, tachycardic and feeding responses of conscious rats given i.c.v. injections of dynorphin A.  相似文献   

17.
Studies were performed in conscious, chronically catheterized male Sprague-Dawley rats to investigate the effect of administered atrial natriuretic peptide (ANP) on blood pressure, renal hemodynamics and urinary electrolyte excretion. Studies were performed on young adult (3-4 month old) rats and on aging rats (18-24 months of age). Low dose ANP (80 ng/kg/min for 60 min) had no effects on renal hemodynamics in either young or old rats and produced only a slight blood pressure reduction in young animals. No effect on urinary electrolyte excretion was evident in young rats whereas in the old animals, low dose ANP produced large rises in the rate of sodium excretion, fractional excretion of sodium and urine flow rate. A four fold higher dose of ANP evoked a moderate natriuretic and a marked antihypertensive response in young rats. Time control studies indicated that time alone had no influence on urinary sodium excretion rate, the fractional excretion of sodium or urine flow rate. These studies indicate a much enhanced sensitivity to the natriuretic effects of administered ANP by the kidneys of old rats.  相似文献   

18.
A John  J P Stasch  D Neuser  C Hirth  F J Morich 《Life sciences》1986,38(22):1991-1997
A monoclonal antibody with specificity for atrial natriuretic peptides (ANP) was produced, that can be used for the radioimmunological determination of ANP-immunoreactivity (ANP-IR) in rat plasma. The antibody recognizes atriopeptin I, II, III, as well as alpha-hANP and alpha-hANP fragment (7-28) and does not crossreact with ANP-fragments (13-28) and (18-28). Plasma levels of ANP-IR in conscious Wistar rats were determined before and after volume-loading. Basal plasma levels of ANP-IR were 108 +/- 12 pg/ml, and after volume-loading increased to 800 +/- 59 pg/ml.  相似文献   

19.
田德润  张殿明 《生理学报》1992,44(2):186-191
Atrial natriuretic peptide (ANP) present in the brain has been reported to have profound effects on water and salt metabolism. This study was designed to observe the effect of intracerebroventricular (ICV) injection of ANP on drinking behavior of rats, induced by centrally administered angiotensin II (Ang II) and 24-hours water deprivation, by using a T-maze to measure the speed they ran in a runway for water rewards. In 24-hours water deprived rats ICV injection of ANP resulted in a significant decrease of either running speed or water intake. Drinking behavior induced by ICV injection of Ang II in normally hydrated rats was also significantly inhibited by a prior injection of ANP. These findings suggest that ANP in the brain plays an important role in the central control of drinking behavior.  相似文献   

20.
The components of the renin-angiotensin system exist in the brain but their physiological role is uncertain. The effects of two angiotensin converting enzyme (ACE) inhibitors, MK 421 (or its diacid) and captopril, on brain ACE activity, as measured by inhibition of the pressor response to intracerebroventricularly (i.c.v.) administered angiotensin I (AI), and the potential contribution of the central nervous system to their antihypertensive activity were evaluated in the present series of experiments. The diacid of MK 421 (1 and 10 ug) and captopril (3 and 10 ug) given i.c.v. to conscious normotensive rats reduced the pressor response to i.c.v. AI indicating that they can inhibit brain ACE. Responses to AII were unaffected. Oral administration of maximal antihypertensive doses of MK 421 (10 mg/kg) and of captopril (30 mg/kg) to normotensive rats did not attenuate pressor responses to i.c.v. AI indicating that brain ACE was not inhibited under these circumstances. Intracerebroventricular administration of MK 421 diacid, (10 and 30 ug) and captopril (30 and 100 ug) did not lower baseline blood pressure of spontaneously hypertensive rats. These experiments indicate that MK 421 and captopril can inhibit brain ACE but that the central renin-angiotensin system probably does not contribute to their antihypertensive activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号