首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mode of Operation of Ampullae of Lorenzini of the Skate, Raja   总被引:5,自引:4,他引:1       下载免费PDF全文
Ampullae of Lorenzini are sensitive electroreceptors. Applied potentials affect receptor cells which transmit synaptically to afferent fibers. Cathodal stimuli in the ampullary lumen sometimes evoke all-or-none "receptor spikes," which are negative-going recorded in the lumen, but more frequently they evoke graded damped oscillations. Cathodal stimuli evoke nerve discharge, usually at stimulus strengths subthreshold for obvious receptor oscillations or spikes. Anodal stimuli decrease any ongoing spontaneous nerve activity. Cathodal stimuli evoke long-lasting depolarizations (generator or postsynaptic potentials) in afferent fibers. Superimposed antidromic spikes are reduced in amplitude, suggesting that the postsynaptic potentials are generated similarly to other excitatory postsynaptic potentials. Anodal stimuli evoke hyperpolarizations of nerves in preparations with tonic activity and in occasional silent preparations; presumably tonic release of excitatory transmitter is decreased. These data are explicable as follows: lumenal faces of receptor cells are tonically (but asynchronously) active generating depolarizing responses. Cathodal stimuli increase this activity, thereby leading to increased depolarization of and increased release of transmitter from serosal faces, which are inexcitable. Anodal stimuli act oppositely. Receptor spikes result from synchronized receptor cell activity. Since cathodal stimuli act directly to hyperpolarize serosal faces, strong cathodal stimuli overcome depolarizing effects of lumenal face activity and are inhibitory. Conversely, strong anodal stimuli depolarize serosal faces, thereby causing release of transmitter, and are excitatory. These properties explain several anomalous features of responses of ampullae of Lorenzini.  相似文献   

2.
When physiological conditions are simulated, skate electroreceptors produce small maintained oscillatory currents. Larger damped oscillations of similar time-course are observed in voltage clamp. Subtraction of leakage in voltage clamp data shows that the oscillations involve no net outward current across the lumenal surface of the epithelium. The oscillations are much faster than the late outward current generated by the lumenal membranes of the receptor cells. Treatment of the basal surface of the epithelium with tetraethyl ammonium (TEA), high K, Co, or EGTA reversibly blocks the oscillations in voltage clamp, but has little or no effect on the epithelial action potential in current clamp or on the current-voltage relation. The TEA sensitivity of the oscillations indicates that they involve a potassium conductance in the basal membranes of the receptor cells. Treatment of the basal membranes with TEA and high calcium, with strontium, or with barium causes these membranes to produce large regenerative responses. Direct stimulation of the basal membranes then elicits a lumen-positive action potential whereas stimulation of the lumenal membranes elicits a diphasic action potential. Excitability of the basal membranes is abolished by extracellular Co, Mn, or La. Modulation of the lumenal membrane calcium conductance by the basal membrane conductances probably gives rise to the oscillatory receptor currents evoked by small voltage stimuli. The slower calcium-activated late conductance in the lumenal membranes may be involved in sensory accommodation.  相似文献   

3.
突触前α7烟碱受体对海马神经元兴奋性突触传递的调控   总被引:4,自引:1,他引:3  
Liu ZW  Yang S  Zhang YX  Liu CH 《生理学报》2003,55(6):731-735
采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholinel receptors,nAChRs)对海马脑片CAl区锥体神经元兴奋性突触传递的调控作用。结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl—piperazinium iodide,DMPP)不能在CAl区锥体神经元上诱发出烟碱电流。DMPP对CAl区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系。DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用。上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断。上述结果提示,海马脑片CAl区锥体神经元兴奋性突触前nAChRs含有对α-银环蛇毒素敏感的胡亚单位,其激活可增强海马CAl区锥体神经元突触前递质谷氨酸的释放,从而对兴奋性突触传递发挥调控作用。  相似文献   

4.
The pacemaker neurons of the heart ganglion are innervated from the CNS through two pairs of acceleratory nerves. The effect of acceleratory nerve stimulation was examined with intracellular electrodes from the pacemaker cells. The major effects on the pacemaker potential were an increase in the rate of rise of the spontaneous depolarization and in the duration of the plateau. The aftereffect of stimulation could last for minutes. No clear excitatory postsynaptic potential (EPSP) was observed, however. On high frequency stimulation, a small depolarizing response (the initial response) was sometimes observed, but the major postsynaptic event was the following slow depolarization, or the enhancement of the pacemaker potential (the late response). With hyperpolarization the initial response did not significantly change its amplitude, but the late response disappeared, showing that the latter has the property of the local response. The membrane conductance did not increase with acceleratory stimulation. The injection of depolarizing current increased the rate of rise of the spontaneous depolarization, but only slightly in comparison with acceleratory stimulation, and did not increase the burst duration. It is concluded that the acceleratory effect is not mediated by the EPSP but is due to a direct action of the transmitter on the pacemaker membrane.  相似文献   

5.
When current clamped, skate electroreceptor epithelium produces large action potentials in response to stimuli that depolarize the lumenal faces of the receptor cells. With increasing stimulus strength these action potentials become prolonged. When the peak voltage exceeds about 140 mV the repolarizing phase is blocked until the end of the stimulus. Perfusion experiments show that the rising phase of the action potential results from an increase in calcium permeability in the lumenal membranes. Perfusion of the lumen with cobalt or with a zero calcium solution containing EGTA blocks the action potential. Perfusion of the lumen with a solution containing 10 mM Ca and 20 mM EGTA initially slows the repolarizing process at all voltages and lowers the potential at which it is blocked. With prolonged perfusion, repolarization is blocked at all voltages. When excitability is abolished by perfusion with cobalt, or with a zero calcium solution containing EGTA, no delayed rectification occurs. We suggest that repolarization during the action potential depends on an influx of calcium into the cytoplasm, and that the rate of repolarization depends on the magnitude of the inward calcium current. Increasingly large stimuli reduce the rate of repolarization by reducing the driving force for calcium, and then block repolarization by causing the lumenal membrane potential to exceed ECa. Changes in extracellular calcium affect repolarization in a manner consistent with the resulting change in ECa.  相似文献   

6.
Records of excitatory postsynaptic currents (EPSCs) are often complex, with overlapping signals that display a large range of amplitudes. Statistical analysis of the kinetics and amplitudes of such complex EPSCs is nonetheless essential to the understanding of transmitter release. We therefore developed a maximum-likelihood blind deconvolution algorithm to detect exocytotic events in complex EPSC records. The algorithm is capable of characterizing the kinetics of the prototypical EPSC as well as delineating individual release events at higher temporal resolution than other extant methods. The approach also accommodates data with low signal-to-noise ratios and those with substantial overlaps between events. We demonstrated the algorithm's efficacy on paired whole-cell electrode recordings and synthetic data of high complexity. Using the algorithm to align EPSCs, we characterized their kinetics in a parameter-free way. Combining this approach with maximum-entropy deconvolution, we were able to identify independent release events in complex records at a temporal resolution of less than 250 μs. We determined that the increase in total postsynaptic current associated with depolarization of the presynaptic cell stems primarily from an increase in the rate of EPSCs rather than an increase in their amplitude. Finally, we found that fluctuations owing to postsynaptic receptor kinetics and experimental noise, as well as the model dependence of the deconvolution process, explain our inability to observe quantized peaks in histograms of EPSC amplitudes from physiological recordings.  相似文献   

7.
Depolarization of the presynaptic terminal by current produced a postsynaptic potential (PSP) which increased with increasing presynaptic polarization and then reached a plateau. Iontophoretic injection of tetraethylammonium ions (TEA) into the presynaptic axon near the terminal produced a prolonged presynaptic spike. The resulting PSP is increased in size and its time course closely followed that of the presynaptic spike. The presynaptic fiber no longer exhibited rectification and strong depolarizations revealed that the PSP reached a maximum with about 110 mv depolarization. Further depolarization produced a decrease in PSP amplitude and finally transmission was blocked. However, a PSP then always appeared on withdrawal of the depolarizing current. Under the conditions of these experiments, the PSP could be considered a direct measure of transmitter release. Bathing the TEA-injected synapse with concentrations of tetrodotoxin (TTX) sufficient to block spike activity in both pre- and postsynaptic axons did not greatly modify postsynaptic electrogenesis. However, doubling TTX concentration reversibly blocked PSP. Thus the permeability changes to Na and K accompanying the spike do not appear necessary for transmitter release. Some other processes related to the level of presynaptic polarization must be involved to explain the data. The inhibition of transmitter release by strong depolarizations appears to be related to Ca action. A membrane Ca current may also be necessary for normal transmitter release.  相似文献   

8.
Adenosine has been implicated as a modulator of retinohypothalamic neurotransmission in the suprachiasmatic nucleus (SCN), the seat of the light-entrainable circadian clock in mammals. Intracellular recordings were made from SCN neurons in slices of hamster hypothalamus using the in situ whole-cell patch clamp method. A monosynaptic, glutamatergic, excitatory postsynaptic current (EPSC) was evoked by stimulation of the optic nerve. The EPSC was blocked by bath application of the adenosine A(1) receptor agonist cyclohexyladenosine (CHA) in a dose-dependent manner with a half-maximal concentration of 1.7 microM. The block of EPSC amplitude by CHA was antagonized by concurrent application of the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist CGS21680 was ineffective in attenuating the EPSC at concentrations up to 50 microM. Trains of four consecutive stimuli at 25 ms intervals usually depressed the EPSC amplitude. However, after application of CHA, consecutive responses displayed facilitation of EPSC amplitude. The induction of facilitation by CHA suggested a presynaptic mechanism of action. After application of CHA, the frequency of spontaneous EPSCs declined substantially, while their amplitude distribution was unchanged or slightly reduced, again suggesting a mainly presynaptic site of action for CHA. Application of glutamate by brief pressure ejection evoked a long-lasting inward current that was unaffected by CHA at concentrations sufficient to reduce the evoked EPSC amplitude substantially (1 to 5 microM), suggesting that postsynaptic glutamate receptor-gated currents were unaffected by the drug. Taken together, these observations indicate that CHA inhibits optic nerve-evoked EPSCs in SCN neurons by a predominantly presynaptic mechanism.  相似文献   

9.
1. When a slice of electric organ of Torpedo is stimulated and superfused with a solution containing a firefly lantern extract, it is possible to measure the release of ATP after each nerve impulse as a light emission. 2. The postsynaptic action of released ACh induces the release of ATP by the postsynaptic cell. Most of the released ATP is of postsynaptic origin. 3. Ion fluxes associated with depolarization, or depolarization itself, trigger the release of ATP from postsynaptic and presynaptic membranes (synaptosomes). 4. ATP is able to block ACh release; a postsynaptic "retrograde transmission" able to control presynaptic transmitter release is possible.  相似文献   

10.
Kreitzer AC  Regehr WG 《Neuron》2001,29(3):717-727
Brief depolarization of cerebellar Purkinje cells was found to inhibit parallel fiber and climbing fiber EPSCs for tens of seconds. This depolarization-induced suppression of excitation (DSE) is accompanied by altered paired-pulse plasticity, suggesting a presynaptic locus. Fluorometric imaging revealed that postsynaptic depolarization also reduces presynaptic calcium influx. The inhibition of both presynaptic calcium influx and EPSCs is eliminated by buffering postsynaptic calcium with BAPTA. The cannabinoid CB1 receptor antagonist AM251 prevents DSE, and the agonist WIN 55,212-2 occludes DSE. These findings suggest that Purkinje cells release endogenous cannabinoids in response to elevated calcium, thereby inhibiting presynaptic calcium entry and suppressing transmitter release. DSE may provide a way for cells to use their firing rate to dynamically regulate synaptic inputs. Together with previous studies, these findings suggest a widespread role for endogenous cannabinoids in retrograde synaptic inhibition.  相似文献   

11.
Excitatory synaptic currents in Purkinje cells   总被引:13,自引:0,他引:13  
The N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptor combine in many regions of the central nervous system to form a dual-component excitatory postsynaptic current. Non-NMDA receptors mediate synaptic transmission at the resting potential, whereas NMDA receptors contribute during periods of postsynaptic depolarization and play a role in the generation of long-term synaptic potentiation. To investigate the receptor types underlying excitatory synaptic transmission in the cerebellum, we have recorded excitatory postsynaptic currents (EPSCS), by using whole-cell techniques, from Purkinje cells in adult rat cerebellar slices. Stimulation in the white matter or granule-cell layer resulted in an all-or-none synaptic current as a result of climbing-fibre activation. Stimulation in the molecular layer caused a graded synaptic current, as expected for activation of parallel fibres. When the parallel fibres were stimulated twice at an interval of 40 ms, the second EPSC was facilitated; similar paired-pulse stimulation of the climbing fibre resulted in a depression of the second EPSC. Both parallel-fibre and climbing-fibre responses exhibited linear current-voltage relations. At a holding potential of -40 mV or in the nominal absence of Mg2+ these synaptic responses were unaffected by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). NMDA applied to the bath failed to evoke an inward current, whereas aspartate or glutamate induced a substantial current; this current was, however, largely reduced by CNQX, indicating that non-NMDA receptors mediate this response. These results indicate that both types of excitatory input to adult Purkinje cells are mediated exclusively by glutamate receptors of the non-NMDA type, and that these cells entirely lack NMDA receptors.  相似文献   

12.
The minimal presynaptic depolarization (MPD) for producing a detectable postsynaptic potential (PSP) was lower than 25 mv in normal or tetrodotoxin (TTX)-containing seawater. The MPD was about 10 mv when a small amount of tetraethylammonium ions (TEA) was injected into the presynaptic terminal. Application of linearly increasing depolarizing current to the normal presynaptic terminal at times produced a PSP before a presynaptic spike was evoked; the rate of rise of the resulting PSP was much slower than that of a PSP triggered by the normal presynaptic spike. A brief depolarizing pulse that preceded the presynaptic spike in normal seawater or the initial transient presynaptic depolarization in TTX decreased the PSP. It increased the PSP when it was applied during the spike or initial transient depolarization. Hyperpolarizing pulses had the reverse effect. The Off-PSP was also modified by inserting pulses at an initial part of the recovery phase of the strong presynaptic depolarization. These results indicate further that increases in Na+ and K+ conductance during presynaptic spike activity are not a requirement for transmitter release; the rate of release of transmitter can be controlled by electrical manipulation of the presynaptic terminal; there is a superficial correspondence between the time courses of presynaptic depolarization and the resulting PSP. Thus presynaptic depolarization appears to be only the first step in the series of events constituting excitation-transmitter release coupling. It may not be a necessary step for the release mechanism.  相似文献   

13.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

14.
1. Synaptic formations between a rat cerebellar granule cell and a Purkinje cell, and also between an inferior-olivary neuron and a Purkinje cell have been accomplished in culture. 2. The synaptic transmission between an inferior-olivary neuron and a Purkinje cell was far much more potent than that between a granule cell and a Purkinje cell in the culture, and the former always induced in a Purkinje cell an action potential followed by prolonged depolarization, which resembled a climbing fiber response in vivo. 3. Synaptic potentiation was induced by repetitive stimulation (2 Hz, 20 sec) of a granule cell, and the synaptic depression was induced by repetitive conjunctive stimulation of both a granule cell and an inferior-olivary neuron as in a slice preparation. 4. When repetitive stimulation of both neurons were given while the postsynaptic Purkinje cell was voltage-clamped at -80 mV, not the depression but the potentiation took place. When repetitive stimulation of a granule cell was coupled with the postsynaptic strong depolarization induced by direct outward current injection, the depression took place. These two experiments indicate that the postsynaptic depolarization during activation of a presynaptic granule cell is both necessary and sufficient to induce the depression, and that the potentiation is induced without the postsynaptic depolarization. 5. The quantal analysis on the synaptic transmission, where fluctuations of amplitudes of synaptic currents in a Purkinje cell induced by a single granule cell were measured, indicated that the synaptic potentiation involves the enhancement of transmitter release from a presynaptic granule cell and that the depression involves changes of postsynaptic receptors on a Purkinje cell.  相似文献   

15.
IL-2 receptor signaling through the Shb adapter protein in T and NK cells   总被引:5,自引:0,他引:5  
We have investigated the effect of hypoxia on the excitatory synaptic transmission in the substantia gelatinosa neurons using perforated-patch-clamp configuration. Brief periods of hypoxia induced a depression in the evoked excitatory postsynaptic current (eEPSC) amplitude. The hypoxia-induced depression of eEPSC was not observed in the presence of theophylline, a nonselective adenosine receptor antagonist, and DPCPX, a selective adenosine receptor A1 antagonist. Application of adenosine (100 microM) also depressed eEPSC in a similar way as with hypoxia. This adenosine-induced depression of eEPSC was inhibited by DPCPX. Hypoxia and exogenous adenosine decreased the frequency of the spontaneous excitatory postsynaptic current (sEPSC) but not the amplitude of sEPSC and increased the paired-pulse ratio. From these results, it is suggested that acute hypoxia depresses the excitatory synaptic transmission by activating the presynaptic adenosine A1 receptor.  相似文献   

16.
Recent experimental evidence suggesting that presynaptic depolarization can evoke transmitter release without calcium influx has been re-examined. The presynaptic terminal of the squid giant synapse can be depolarized by variable amounts while recording presynaptic calcium current under voltage clamp and postsynaptic responses. Small depolarizations open few calcium channels with large single channel currents. Large depolarizations approaching the calcium equilibrium potential open many channels with small single channel currents. When responses to small and large depolarizations eliciting similar total macroscopic calcium currents are compared, the large pulses evoke more transmitter release. This apparent voltage-dependence of transmitter release may be explained by the greater overlap of calcium concentration domains surrounding single open calcium channels when many closely apposed channels open at large depolarizations. This channel domain overlap leads to higher calcium concentrations at transmitter release sites and more release for large depolarizations than for small depolarizations which open few widely dispersed channels. At neuromuscular junctions, a subthreshold depolarizing pulse to motor nerve terminals may release over a thousand times as much transmitter if it follows a brief train of presynaptic action potentials than if it occurs in isolation. This huge synaptic facilitation has been taken as indicative of a direct effect of voltage which is manifest only when prior activity raises presynaptic resting calcium levels. This large facilitation is actually due to a post-tetanic supernormal excitability in motor nerve terminals, causing the previously subthreshold test pulse to become suprathreshold and elicit a presynaptic action potential. When motor nerve terminals are depolarized by two pulses, as the first pulse increases above a certain level it evokes more transmitter release but less facilitation of the response to the second pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We investigate the effects of synaptic transmission on early visual processing by examining the passage of signals from photoreceptors to second order neurons (LMCS). We concentrate on the roles played by three properties of synaptic transmission: (1) the shape of the characteristic curve, relating pre- and postsynaptic signal amplitudes, (2) the dynamics of synaptic transmission and (3) the noise introduced during transmission. The characteristic curve is sigmoidal and follows a simple model of synaptic transmission (Appendix) in which transmitter release rises exponentially with presynaptic potential. According to this model a presynaptic depolarization of 1.50-1.86 mV produces an e-fold increase in postsynaptic conductance. The characteristic curve generates a sigmoidal relation between postsynaptic (LMC) response amplitude and stimulus contrast. The shape and slope of the characteristic curve is unaffected by the state of light adaptation. Retinal antagonism adjusts the characteristic curve to keep it centred on the mean level of receptor response generated by the background. Thus the photoreceptor synapses operate in the mid-region of the curve, where the slope or gain is highest and equals approximately 6. The dynamics of transmission of a signal from photoreceptor to second-order neuron approximates to the sum of two processes with exponential time courses. A momentary receptor depolarization generates a postsynaptic hyperpolarization of time constant 0.5-1.0 ms, followed by a slower and weaker depolarization. Light adaptation increases the relative amplitude of the depolarizing process and reduces its time constant from 80 ms to 1.5 ms. The hyperpolarizing process is too rapid to bandlimit receptor signals. The noise introduced during the passage of the signal from receptor to second-order neuron is measured by comparing signal:noise ratios and noise power spectra in the two cell types. Under daylight conditions from 50 to 70% of the total noise power is generated by events associated with the transmission of photoreceptor signals and the generation of LMC responses. According to the exponential model of transmitter release, the effects of synaptic noise are minimized when synaptic gain is maximized. Moreover, both retinal antagonism and the sigmoidal shape of the characteristic curve promote synaptic gain. We conclude that retinal antagonism and nonlinear synaptic amplification act in concert to protect receptor signals from contamination by synaptic noise. This action may explain the widespread occurrence of these processes in early visual processing.  相似文献   

18.
Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp.  相似文献   

19.
Kainate receptors are ionotropic glutamate receptors located postsynaptically, mediating frequency-dependent transmission, and presynaptically, modulating transmitter release. In contrast to the excitatory postsynaptic kainate receptors, presynaptic kainate receptor can also be inhibitory and their effects may involve a metabotropic action. Arachidonic acid (AA) modulates most ionotropic receptors, in particular postsynaptic kainate receptor-mediated currents. To further explore differences between pre- and postsynaptic kainate receptors, we tested if presynaptic kainate receptors are affected by AA. Kainate (0.3-3 microM) and the kainate receptor agonist, domoate (60-300 nM), inhibited by 19-54% the field excitatory postsynaptic potential (fEPSP) slope in rat CA1 hippocampus, and increased by 12-32% paired-pulse facilitation (PPF). AA (10 microM) attenuated by 37-72% and by 62-66% the domoate (60-300 nM)-induced fEPSP inhibition and paired-pulse facilitation increase, respectively. This inhibition by AA was unaffected by cyclo- and lipo-oxygenase inhibitors, indomethacin (20 microM) and nordihydroguaiaretic acid (NDGA, 50 microM) or by the free radical scavenger, N-acetyl-L-cysteine (0.5 mM). The K+ (20 mM)-evoked release of [3H]glutamate from superfused hippocampal synaptosomes was inhibited by 18-39% by domoate (1-10 microM), an effect attenuated by 35-63% by AA (10 microM). Finally, the KD (40-55 nM) of the kainate receptor agonist [3H]-(2S,4R)-4-methylglutamate ([3H]MGA) (0.3-120 nM) binding to hippocampal synaptosomal membranes was increased by 151-329% by AA (1-10 microM). These results indicate that AA directly inhibits presynaptic kainate receptor controlling glutamate release in the CA1 area of the rat hippocampus.  相似文献   

20.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号