首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
JC virus encephalopathy (JCVE) is a newly described gray matter disease of the brain caused by productive infection of cortical pyramidal neurons. We characterized the full length sequence of JCV isolated from the brain of a JCVE patient, analyzed its distribution in various compartments by PCR, and determined viral gene expression in the brain by immunohistochemistry(IHC). We identified a novel JCV variant, JCV(CPN1), with a unique 143 bp deletion in the Agno gene encoding a truncated 10 amino acid peptide, and harboring an archetype-like regulatory region. This variant lacked one of three nuclear protein binding regions in the Agno gene. It was predominant in the brain, where it coexisted with an Agno-intact wild-type strain. Double immunostaining with anti-Agno and anti- VP1 antibodies demonstrated that the truncated JCV(CPN1) Agno peptide was present in the majority of cortical cells productively infected with JCV. We then screened 68 DNA samples from 8 brain, 30 CSF and 30 PBMC samples of PML patients, HIV+ and HIV- control subjects. Another JCV(CPN) strain with a different pattern of Agno-deletion was found in the CSF of an HIV+/PML patient, where it also coexisted with wild-type, Agno-intact JCV. These findings suggest that the novel tropism for cortical pyramidal neurons of JCV(CPN1), may be associated with the Agno deletion. Productive and lytic infection of these cells, resulting in fulminant JCV encephalopathy and death may have been facilitated by the co-infection with a wild-type strain of JCV.  相似文献   

2.
3.
A tumor cell suspension of an explanted JC virus (JCV)-induced owl monkey glioblastoma was inoculated intracranially into four recipient juvenile owl monkeys. Twenty-eight months following inoculation one owl monkey developed a glioblastoma, which was explanted into tissue culture. DNA from both the tumor tissue and tumor cells in culture hybridized to a JCV DNA probe by Southern analysis, indicating that free, as well as integrated, viral DNA may be present. At the time of the second culture passage, viral JCV DNA was extracted from these cells and cloned into a plasmid vector. Nucleotide sequencing of the regulatory region of the cloned DNA demonstrated homology with the prototype Mad-1 strain of JCV and revealed a 19-base-pair deletion in the second 98-base-pair tandem repeat that eliminated a second TATA box. This deletion is characteristic of the Mad-4 strain of JCV, which is highly neurooncogenic. By the third culture passage, 100% of the cells were T-antigen positive. Approximately one-third of the cells in culture hybridized to a biotinylated JCV DNA probe when in situ hybridization was used, a technique that only detects high-copy-number of replicating viral sequences. By the culture passage 5 and continuing through culture passage 14, viable JC virions could be recovered. The T protein synthesized by this virus, now termed JCV-586, differed from both the Mad-1 and Mad-4 strains in that it formed a stable complex with the cellular p53 protein in the tumor cells. Also, the JCV-586 T protein reacted to several monoclonal antibodies made to the simian virus 40 T protein that were not recognized by either the Mad-1 or Mad-4 strains.  相似文献   

4.
Progressive multifocal leukoencephalopathy is a demyelinating disease of the human central nervous system that results from lytic infection of oligodendrocytes by the polyomavirus JC (JCV). Originally, JCV was thought to replicate exclusively in human glial cells, specifically oligodendrocytes. However, we have recently shown that JCV can replicate in cells of lymphoid origin such as hematopoietic precursor cells, B lymphocytes, and tonsillar stromal cells. To determine whether tonsils harbor JCV, we tested a total of 54 tonsils, 38 from children and 16 from adult donors. Nested PCRs with primer sets specific for the viral T protein and regulatory regions were used for the detection of JCV DNA. JCV DNA was detected in 21 of 54 tonsil tissues, or 39% (15 of 38 children and 6 of 16 adults) by using regulatory-region primers and in 19 of 54 tonsil tissues, or 35% (13 of 38 children and 6 of 16 adults) by using the T-protein primers. The DNA extracted from children’s nondissected tonsil tissue, isolated tonsillar lymphocytes, and isolated stromal cells that demonstrated PCR amplification of the JCV regulatory region underwent cloning and nucleotide sequencing. Of the regulatory-region sequences obtained, nearly all contained tandem repeat arrangements. Clones originating from nondissected tonsil tissue and tonsillar lymphocytes were found to have sequences predominantly of the Mad-1 prototype strain, whereas the majority of clones from the DNA of tonsillar stromal cells had sequences characteristic of the Mad-8br strain of JCV. A few clones demonstrated structures other than tandem repeats but were isolated only from tonsillar lymphocytes. These data provide the first evidence of the JCV genome in tonsil tissue and suggest that tonsils may serve as an initial site of viral infection.  相似文献   

5.
The human polyomavirus JC virus (JCV) is the etiologic agent of a fatal central nervous system (CNS) demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs predominantly in immunosuppressed patients and has increased dramatically as a result of the AIDS pandemic. The major target cell of JCV infection and lytic replication in the CNS is the oligodendrocyte. The mechanisms by which JCV initiates and establishes infection of these glial cells are not understood. The initial interaction between JCV and glial cells involves virus binding to N-linked glycoproteins containing terminal alpha(2-6)-linked sialic acids. The subsequent steps of entry and targeting of the viral genome to the nucleus have not been described. In this report, we compare the kinetics and mechanisms of infectious entry of JCV into human glial cells with that of the related polyomavirus, simian virus 40 (SV40). We demonstrate that JCV, unlike SV40, enters glial cells by receptor-mediated clathrin-dependent endocytosis.  相似文献   

6.
7.
The human polyomavirus JC virus (JCV) establishes persistent infections in most individuals and is the etiologic agent of progressive multifocal leukoencephalopathy. In this report, we describe the establishment of a soluble cell-free system that is capable of replicating exogenous plasmid DNA containing the JCV origin of replication. Replication in this system is completely dependent on the addition of JCV large T antigen (TAg). To prepare JCV TAg for replication analysis, a recombinant baculovirus containing the JCV TAg-coding sequence was generated. TAg expressed in insect cells was purified by metal chelate chromatography. JCV TAg supported initiation of JCV DNA replication in the presence of DNA polymerase alpha-primase, replication protein A, and topoisomerase I in a dose-dependent manner and was also capable of supporting DNA replication in crude human cell extracts. Point mutation of TAg-binding site I strongly diminished TAg binding and concomitantly reduced JCV DNA replication in vivo and in vitro by approximately 50%. Point mutation of TAg-binding site II or deletion of the early palindrome completely abolished replication of JCV origin-containing plasmid DNA in vivo and in vitro, marking these sequences as essential components of the JCV core origin. A comparison of several TAgs showed that simian virus 40 TAg, but not mouse polyomavirus (PyV) TAg, supported replication of a plasmid containing a JCV origin. These findings provide evidence that replication in the cell-free system faithfully mimics JCV DNA replication in vivo. Therefore, it may be a useful tool for future analysis of interactions between JCV and its host cell.  相似文献   

8.
Large T antigen (TAg) of the human polyomavirus JC virus (JCV) possesses DNA binding and helicase activities, which, together with various cellular proteins, are required for replication of the viral genome. We now show that JCV-infected cells expressing TAg accumulate in the G2 phase of the cell cycle as a result of the activation of ATM- and ATR-mediated G2 checkpoint pathways. Transient transfection of cells with a TAg expression vector also induced G2 checkpoint signaling and G2 arrest. Analysis of TAg mutants with different subnuclear localizations suggested that the association of TAg with cellular DNA contributes to the induction of G2 arrest. Abrogation of G2 arrest by inhibition of ATM and ATR, Chk1, and Wee1 suppressed JCV genome replication. In addition, abrogation of the G2-M transition by Cdc2 depletion disabled Wee1 depletion-induced suppression of JCV genome replication, suggesting that JCV replication is facilitated by G2 arrest resulting from G2 checkpoint signaling. Moreover, inhibition of ATM and ATR by caffeine suppressed JCV production. The observation that oligodendrocytes productively infected with JCV in vivo also undergo G2 arrest suggests that G2 checkpoint inhibitors such as caffeine are potential therapeutic agents for JCV infection.  相似文献   

9.
10.
In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal–fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection.  相似文献   

11.
Summary SV40 viruses bearing mutations at the carboxy-terminus of large T antigen exhibit a host-range phenotype: such viruses are able to grow in BSC monkey kidney cells at 37° C, but give at least 10 000-fold lower yields than wild type virus in BSC cells at 32° C or in CV1 monkey kidney cells at either temperature. The block to infection in the nonpermissive cell type occurs after the onset of viral DNA replication. Infectious progeny virions are produced at very low efficiency. Although capsid proteins are synthesized at decreased levels, this does not account for the magnitude of the defect. Presumably some step of virion assembly or maturation is affected in these mutants. We have previously reported that the viral agnogene product, a protein throught to be involved in viral assembly or release, fails to accumulate in CV1 cells infected with host-range mutants. In polyoma virus the middle T antigen plays a role in virion maturation by influencing the phosphorylation of capsid proteins. In this communication we show that host-range mutants fail to undergo productive infection of CV1 cells expressing middle T antigen. These mutants do form plaques on an agnoprotein-expressing cell line. However, the agnoprotein does not seem to act by correcting the mutational block but rather increases the efficiency of plaque formation. This work was supported by grants CA40586 and BRSG 2S07RR07084-23 to J. M. P. and grant CA33079 to L. T., from the National Institutes of Health, Bethesda, MD.  相似文献   

12.
13.
African Green Monkey Kidney cells were shown to normally synthesize immunoreactive PGE1. Infection of these cells with Sendai virus did not alter rates of PGE1 synthesis, while it stimulated interferon production. PGAs, that we have previously shown to be potent inhibitors of Sendai virus replication in this system, at the same dose (4 μg/ml), also strongly inhibited the replication of this virus in HEp-2 cells and in VERO cells, a monkey kidney cell line that does not produce interferon. PGA1 was found to be effective in several cell and virus models, suggesting a broad spectrum of antiviral actions. Finally, we confirmed the observation that PGA1-treatment prevents the establishment of a “carrier state” by Sendai virus, and PGA1-cured cells did not show any sign of persistent infection for periods as long as 110 days after Sendai function. Attempts to cure already established persistently infected cells were only partially successful.  相似文献   

14.
Human fetal Schwann cells support JC virus multiplication.   总被引:4,自引:1,他引:3       下载免费PDF全文
The human papovavirus JC virus (JCV), the etiologic agent of progressive multifocal leukoencephalopathy, displays a narrow host range for growth, preferentially infecting oligodendrocytes, the myelin-producing cells of the central nervous system. In tissue culture, human fetal brain cells have been used for JCV propagation because of their ability to support JCV virion production. In this study, we evidence that a human fetal cell type derived from the peripheral nervous system can be productively infected with JCV. Schwann cells, the cell type responsible for myelination in the peripheral nervous system, support the expression of JCV T antigen and JCV DNA replication. However, viral proteins and DNA replication were not detected either in dorsal root ganglion neurons or fibroblasts. These results extend the host range of JCV to include another cell of the glial lineage whose function is myelin formation.  相似文献   

15.
16.
JC virus (JCV), a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML). In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs) isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases and the opportunities for the use of this model in development of therapeutic strategies.  相似文献   

17.
18.
Pathogenic JCV with rearranged regulatory regions (PML-type) causes PML, a demyelinating disease, in the brains of immunocompromised patients. On the other hand, archetype JCV persistently infecting the kidney is thought to be converted to PML-type virus during JCV replication in the infected host under immunosuppressed conditions. In addition, Tat protein, encoded by HIV-1, markedly enhances the expression of a reporter gene under control of the JCV late promoter.
In order to examine the influence of Tat on JCV propagation, we used kidney-derived COS-7 cells, which only permit archetype JCV, and established COS-tat cells, which express HIV-1 Tat stably. We found that the extent of archetype JCV propagation in COS-tat cells is significantly greater than in COS-7 cells. On the other hand, COS-7 cells express SV40 T antigen, which is a strong stimulator of archetype JCV replication. The expression of SV40 T antigen was enhanced by HIV-1 Tat slightly according to real-time RT-PCR, this was not closely related to JCV replication in COS-tat cells. The efficiency of JCV propagation depended on the extent of expression of functional Tat. To our knowledge, this is the first report of increased production of archetype JCV in a culture system using cell lines stably expressing HIV-1 Tat. We propose here that COS-tat cells are a useful tool for studying the role of Tat in archetype JCV replication in the development of PML.  相似文献   

19.
A Lucas  W Flintoff  R Anderson  D Percy  M Coulter  S Dales 《Cell》1977,12(2):553-560
Infection of mice with the neurotropic JHM strain of murine hepatitis virus causes demyelinating lesions resulting from an infection of the oligodendroglia. This was most evident in mice inoculated intraperitoneally with JHM. Such CNS lesions were not observed in mice inoculated intraperitoneally with the MHV3 strain. An in vitro system is described in which the rat glial RN2 cell line functions as a discriminating host for the JHM virus. Shortly after inoculation, this virus establishes a persistent infection in which there is a cyclical rise and fall in titer with an accompanying cytopathology. Furthermore, this host cell confers a thermal lability which the virus does not demonstrate in the fully permissive host cell, L-2. By comparison, infection of RN2 cells with the prototype MHV3 is aborted immediately. In the persistent infection of RN2 cells with measles virus, Hallé strain, the cell again confers a temperature sensitivity which the virus does not possess when replicating in Vero cells.This appears to be the first instance in which a cloned cell line of glial origin determines the outcome of the infectious process, discriminating in favor of a neurotropic variant which possesses a tropism for the glia in vivo. Systems such as the one described here may now offer a specific screening procedure for selecting, identifying and characterizing the nature of neurotropic viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号