首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.  相似文献   

2.
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone. In this study, we sought to characterize the effect of Slit (=Slit-2) on the CXCL12/CXCR4-mediated metastatic properties of breast cancer cells. We demonstrate here that breast cancer cells and tissues derived from breast cancer patients express Robo 1 and 2 receptors. We also show that Slit treatment inhibits CXCL12/CXCR4-induced breast cancer cell chemotaxis, chemoinvasion, and adhesion, the fundamental components that promote metastasis. Slit had no significant effect on the CXCL12-induced internalization process of CXCR4. In addition, characterization of signaling events revealed that Slit inhibits CXCL12-induced tyrosine phosphorylation of focal adhesion components such as RAFTK/Pyk2 at residues 580 and 881, focal adhesion kinase at residue 576, and paxillin. We found that Slit also inhibits CXCL12-induced phosphatidylinositol 3-kinase, p44/42 MAP kinase, and metalloproteinase 2 and 9 activities. However, it showed no effect on JNK and p38 MAP kinase activities. To our knowledge, this is the first report to analyze in detail the effect of Slit on breast cancer cell motility as well as its effect on the critical components of the cancer cell chemotactic machinery. Studies of the Slit-Robo complex may foster new anti-chemotactic approaches to block cancer cell metastasis.  相似文献   

3.
Hyaluronan (HA), in the bone marrow stroma, is the major non-protein glycosaminoglycan component of extracellular matrix (ECM) involved in cell positioning, proliferation, differentiation as well as in receptor-mediated changes in gene expression. Repair of bone and regeneration of bone marrow is dependent on ECM, inflammatory factors, like chemokines and degradative factors, like metalloproteinases. We analyzed the interaction between human mesenchymal stem cells (h-MSCs) and a three-dimensional (3-D) HA-based scaffold in vitro. The expression of CXC chemokines/receptors, CXCL8 (IL-8)/CXCR1-2, CXCL10 (IP-10)/CXCR3, CXCL12 (SDF-1)/CXCR4, and CXCL13 (BCA-1)/CXCR5, and metalloproteinases/inhibitors MMP-1, MMP-3, MMP-13/TIMP-1 were evaluated in h-MSCs grown on plastic or on HA-based scaffold by Real-time PCR, ELISA, and immunocytochemical techniques. Moreover, the expression of two HA receptors, CD44 and CD54, was analyzed. We found both at mRNA and protein levels that HA-based scaffold induced the expression of CXCR4, CXCL13, and MMP-3 and downmodulated the expression of CXCL12, CXCR5, MMP-13, and TIMP-1 while HA-based scaffold induced CD54 expression but not CD44. We found that these two HA receptors were directly involved in the modulation of CXCL12, CXCL13, and CXCR5. This study demonstrates a direct action of a 3-D HA-based scaffold, widely used for cartilage and bone repair, in modulating both h-MSCs inflammatory and degradative factors directly involved in the engraftment of specific cell types in a damaged area. Our data clearly demonstrate that HA in this 3-D conformation acts as a signaling molecule for h-MSCs.  相似文献   

4.
CXCL12-induced chemotaxis and adhesion to VCAM-1 decrease as B cells differentiate in the bone marrow. However, the mechanisms that regulate CXCL12/CXCR4-mediated signaling are poorly understood. We report that after CXCL12 stimulation of progenitor B cells, focal adhesion kinase (FAK) and PI3K are inducibly recruited to raft-associated membrane domains. After CXCL12 stimulation, phosphorylated FAK is also localized in membrane domains. The CXCL12/CXCR4-FAK pathway is membrane cholesterol dependent and impaired by metabolic inhibitors of G(i), Src family, and the GTPase-activating protein, regulator of G protein signaling 1 (RGS1). In the bone marrow, RGS1 mRNA expression is low in progenitor B cells and high in mature B cells, implying developmental regulation of CXCL12/CXCR4 signaling by RGS1. CXCL12-induced chemotaxis and adhesion are impaired when FAK recruitment and phosphorylation are inhibited by either membrane cholesterol depletion or overexpression of RGS1 in progenitor B cells. We conclude that the recruitment of signaling molecules to specific membrane domains plays an important role in CXCL12/CXCR4-induced cellular responses.  相似文献   

5.
The mechanisms leading to renal cell carcinoma (RCC) metastasis are incompletely understood. Although evidence shows that the chemokine receptor CXCR4 and its ligand CXCL12 may regulate tumor dissemination, their role in RCC is not clearly defined. We examined CXCR4 expression and functionality on RCC cell lines, and explored CXCL12-triggered tumor adhesion to human endothelium (HUVEC) or extracellular matrix proteins. Functional CXCR4 was expressed on A498 tumor cells, enabling them to migrate towards a CXCL12 gradient. CXCR4 engagement by CXCL12 induced elevated cell adhesion to HUVEC, to immobilized fibronectin, laminin or collagen. Anti-CXCR4 antibodies or CXCR4 knock down by siRNA applied prior to CXCL12 stimulation impaired CXCL12-triggered tumor adhesion. However, blocking CXCR4 subsequent to CXCL12 stimulation did not. This pointed to an indirect control of tumor cell adhesion by CXCR4. In fact, CXCR4 engagement by CXCL12 also induced alterations of receptors of the integrin family, notably alpha3, alpha5, beta1 and beta3 subunits, and blocking beta1 integrins with a function-blocking antibody prevented CXCL12-induced A498 adhesion. Focal adhesion kinase (total and activated) and integrin-linked kinase significantly increased in CXCL12-treated A498 cells, accompanied by a distinct up-regulation of ERK1/2, JNK and p38 phosphorylation. Therefore, CXCR4 may be crucial in controlling adhesion of A498 cells via cross talking with integrin receptors. These data show that CXCR4 receptors contribute to RCC dissemination and may provide a novel link between CXCR4 chemokine receptor expression and integrin triggered RCC adhesion to the vascular wall and subendothelial matrix components.  相似文献   

6.
Oligosaccharides of hyaluronan are potent activators of dendritic cells   总被引:21,自引:0,他引:21  
The extracellular matrix component hyaluronan (HA) exists physiologically as a high m.w. polymer but is cleaved at sites of inflammation, where it will be contacted by dendritic cells (DC). To determine the effects of HA on DC, HA fragments of different size were established. Only small HA fragments of tetra- and hexasaccharide size (sHA), but not of intermediate size (m.w. 80, 000-200,000) or high m.w. HA (m.w. 1,000,000-600,000) induced immunophenotypic maturation of human monocyte-derived DC (up-regulation of HLA-DR, B7-1/2, CD83, down-regulation of CD115). Likewise, only sHA increased DC production of the cytokines IL-1beta, TNF-alpha, and IL-12 as well as their allostimulatory capacity. These effects were highly specific for sHA, because they were not induced by other glycosaminoglycans such as chondroitin sulfate or heparan sulfate or their fragmentation products. Interestingly, sHA-induced DC maturation does not involve the HA receptors CD44 or the receptor for hyaluronan-mediated motility, because DC from CD44-deficient mice and wild-type mice both responded similarly to sHA stimulation, whereas the receptor for hyaluronan-mediated motility is not detectable in DC. However, TNF-alpha is an essential mediator of sHA-induced DC maturation as shown by blocking studies with a soluble TNFR1. These findings suggest that during inflammation, interaction of DC with small HA fragments induce DC maturation.  相似文献   

7.
Chemokines and their receptors function in migration and homing of cells to target tissues. Recent evidence suggests that cancer cells use a chemokine receptor axis for metastasis formation at secondary sites. Previously, we showed that binding of the chemokine CXCL12 to its receptor CXCR4 mediated signaling events resulting in matrix metalloproteinase-9 expression in prostate cancer bone metastasis. A variety of methods, including lipid raft isolation, stable overexpression of CXCR4, cellular adhesion, invasion assays, and the severe combined immunodeficient-human bone tumor growth model were used. We found that (a) CXCR4 and HER2 coexist in lipid rafts of prostate cancer cells; (b) the CXCL12/CXCR4 axis results in transactivation of the HER2 receptor in lipid rafts of prostate cancer cells; (c) Src kinase mediates CXCL12/CXCR4 transactivation of HER2 in prostate cancer cells; (d) a pan-HER inhibitor desensitizes CXCR4-induced transactivation and subsequent matrix metalloproteinase-9 secretion and invasion; (e) lipid raft-disrupting agents inhibited raft-associated CXCL12/CXCR4 transactivation of the HER2 and cellular invasion; (f) overexpression of CXCR4 in prostate cancer cells leads to increased HER2 phosphorylation and migratory properties of prostate cancer cells; and (g) CXCR4 overexpression enhances bone tumor growth and osteolysis. These data suggest that lipid rafts on the cell membrane are the key site for CXCL12/CXCR4-induced HER2 receptor transactivation. This transactivation contributes to enhanced invasive signals and metastatic growth in the bone microenvironment.  相似文献   

8.
CXC chemokine receptor 4 (CXCR4) has been shown to play a critical role in chemotaxis and homing, which are key steps in cancer metastasis. There is also increasing evidence that links this receptor to angiogenesis; however, its molecular basis remains elusive. Vascular endothelial growth factor (VEGF), one of the major angiogenic factors, promotes the formation of leaky tumor vasculatures that are the hallmarks of tumor progression. Here, we investigated whether CXCR4 induces the expression of VEGF through the PI3K/Akt pathway. Our results showed that CXCR4/CXCL12 induced Akt phosphorylation, which resulted in upregulation of VEGF at both the mRNA and protein levels. Conversely, blocking the activation of Akt signaling led to a decrease in VEGF protein levels; blocking CXCR4/CXCL12 interaction with a CXCR4 antagonist suppressed tumor angiogenesis and growth in vivo. Furthermore, VEGF mRNA levels correlated well with CXCR4 mRNA levels in patient tumor samples. In summary, our study demonstrates that the CXCR4/CXCL12 signaling axis can induce angiogenesis and progression of tumors by increasing expression of VEGF through the activation of PI3K/Akt pathway. Our findings suggest that targeting CXCR4 could provide a potential new anti-angiogenic therapy to suppress the formation of both primary and metastatic tumors.  相似文献   

9.
CD44 is an adhesion molecule that serves as a cell surface receptor for several extracellular matrix components, including hyaluronan (HA). The proteolytic cleavage of CD44 from the cell surface plays a critical role in the migration of tumor cells. Although this cleavage can be induced by certain stimuli such as phorbol ester and anti-CD44 antibodies in vitro, the physiological inducer of CD44 cleavage in vivo is unknown. Here, we demonstrate that HA oligosaccharides of a specific size range induce CD44 cleavage from tumor cells. Fragmented HA containing 6-mers to 14-mers enhanced CD44 cleavage dose-dependently by interacting with CD44, whereas a large polymer HA failed to enhance CD44 cleavage, although it bound to CD44. Examination using uniformly sized HA oligosaccharides revealed that HAs smaller than 36 kDa significantly enhanced CD44 cleavage. In particular, the 6.9-kDa HA (36-mers) not only enhanced CD44 cleavage but also promoted tumor cell motility, which was completely inhibited by an anti-CD44 monoclonal antibody. These results raise the possibility that small HA oligosaccharides, which are known to occur in various tumor tissues, promote tumor invasion by enhancing the tumor cell motility that may be driven by CD44 cleavage.  相似文献   

10.
Follicular dendritic cells (FDCs) up-regulate the chemokine receptor CXCR4 on CD4 T cells, and a major subpopulation of germinal center (GC) T cells (CD4(+)CD57(+)), which are adjacent to FDCs in vivo, expresses high levels of CXCR4. We therefore reasoned that GC T cells would actively migrate to stromal cell-derived factor-1 (CXCL12), the CXCR4 ligand, and tested this using Transwell migration assays with GC T cells and other CD4 T cells (CD57(-)) that expressed much lower levels of CXCR4. Unexpectedly, GC T cells were virtually nonresponsive to CXCL12, whereas CD57(-)CD4 T cells migrated efficiently despite reduced CXCR4 expression. In contrast, GC T cells efficiently migrated to B cell chemoattractant-1/CXCL13 and FDC supernatant, which contained CXCL13 produced by FDCs. Importantly, GC T cell nonresponsiveness to CXCL12 correlated with high ex vivo expression of regulator of G protein signaling (RGS), RGS13 and RGS16, mRNA and expression of protein in vivo. Furthermore, FDCs up-regulated both RGS13 and RGS16 mRNA expression in non-GC T cells, resulting in their impaired migration to CXCL12. Finally, GC T cells down-regulated RGS13 and RGS16 expression in the absence of FDCs and regained migratory competence to CXCL12. Although GC T cells express high levels of CXCR4, signaling through this receptor appears to be specifically inhibited by FDC-mediated expression of RGS13 and RGS16. Thus, FDCs appear to directly affect GC T cell migration within lymphoid follicles.  相似文献   

11.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

12.
Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with β-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with β-arrestin 2.  相似文献   

13.
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.  相似文献   

14.
Hyaluronic acid (HA) is known to play an important role in motility of tumor cells. However, the molecular mechanisms associated with HA-promoted melanoma cell motility are not fully understood. Treatment of cells with HA was shown to increase the production of reactive oxygen species (ROS) in a CD44-dependent manner. Antioxidants, such as N-acetyl-l-cysteine and seleno-l-methionine, prevented HA from enhancing cell motility. Protein kinase C (PKC)-alpha and PKCdelta were responsible for increased Rac1 activity, production of ROS, and mediated HA-promoted cell motility. HA increased Rac1 activity via CD44, PKCalpha, and PKCdelta. Transfection with dominant negative and constitutive active Rac1 mutants demonstrated that Rac1 was responsible for the increased production of ROS and cell motility by HA. Inhibition of NADPH oxidase by diphenylene iodonium and down-regulation of p47Phox and p67Phox decreased the ROS level, suggesting that NADPH oxidase is the main source of ROS production. Rac1 increased phosphorylation of FAK. FAK functions downstream of and is necessary for HA-promoted cell motility. Secretion and expression of MMP-2 were increased by treatment with HA via the action of PKCalpha, PKCdelta, and Rac1 and the production of ROS and FAK. Ilomastat, an inhibitor of MMP-2, exerted a negative effect on HA-promoted cell motility. HA increased interaction between CD44 and epidermal growth factor receptor (EGFR). AG1478, an inhibitor of EGFR, decreased phosphorylation of PKCalpha, PKCdelta, and Rac1 activity and suppressed induction of p47Phox and p67Phox. These results suggest that CD44-EGFR interaction is necessary for HA-promoted cell motility by regulating PKC signaling. EGFR-Akt interaction promoted by HA was responsible for the increased production of ROS and HA-promoted cell motility. In summary, HA promotes CD44-EGFR interaction, which in turn activates PKC signaling, involving Akt, Rac1, Phox, and the production of ROS, FAK, and MMP-2, to enhance melanoma cell motility.  相似文献   

15.
Hyaluronan is a glycosaminoglycan of the extracellular matrix. In tumors and during chronic inflammatory diseases, hyaluronan is degraded to smaller fragments, which are known to stimulate endothelial cell differentiation. In this study, we have compared the molecular mechanisms through which hyaluronan dodecasaccharides (HA12), and the known angiogenic factor, fibroblast growth factor 2 (FGF-2), induce capillary endothelial cell sprouting in a three-dimensional collagen gel. The gene expression profiles of unstimulated and HA12- or FGF-2-stimulated endothelial cells were compared using a microarray analysis approach. The data revealed that both FGF-2 and HA12 promoted endothelial cell morphogenesis in a process depending on the expression of ornithine decarboxylase (Odc) and ornithine decarboxylase antizyme inhibitor (Oazi) genes. Among the genes selectively up-regulated in response to HA12 was the chemokine CXCL1/GRO1 gene. The notion that the induction of CXCL1/GRO1 is of importance for HA12-induced endothelial cell sprouting was supported by the fact that morphogenesis was inhibited by antibodies specifically neutralizing the CXCL1/GRO1 protein product. HA12-stimulated endothelial cell differentiation was exerted via binding to CD44 since it was inhibited by antibodies blocking CD44 function. Our data show that hyaluronan fragments and FGF-2 affect endothelial cell morphogenesis by the induction of overlapping but also by distinct sets of genes.  相似文献   

16.
Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.  相似文献   

17.
Badr G  Lefevre EA  Mohany M 《PloS one》2011,6(9):e23741
In multiple myeloma (MM), malignant plasma cells reside in the bone marrow, where they accumulate in close contact with stromal cells. The mechanisms responsible for the chemotaxis of malignant plasma cells are still poorly understood. Thus, we investigated the mechanisms involved in the chemotaxis of MDN and XG2 MM cell lines. Both cell lines strongly expressed CCR9, CXCR3 and CXCR4 chemokine receptors but only migrated toward CXCL12. Activation of CXCR4 by CXCL12 resulted in the association of CXCR4 with CD45 and activation of PLCβ3, AKT, RhoA, IκBα and ERK1/2. Using siRNA-silencing techniques, we showed CD45/CXCR4 association is essential for CXCL12-induced migration of MM cells. Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn, has been described as a chemopreventive and chemotherapeutic compound. TQ treatment strongly inhibited CXCL12-mediated chemotaxis in MM cell lines as well as primary cells isolated from MM patients, but not normal PBMCs. Moreover, TQ significantly down-regulated CXCR4 expression and CXCL12-mediated CXCR4/CD45 association in MM cells. Finally, TQ also induced the relocalization of cytoplasmic Fas/CD95 to the membrane of MM cells and increased CD95-mediated apoptosis by 80%. In conclusion, we demonstrate the potent anti-myeloma activity of TQ, providing a rationale for further clinical evaluation.  相似文献   

18.
The chemokine SDF-1/CXCL12 induces and modulates major steps of ontogenesis, regeneration and tumorigenesis. Depending on the organ or tissue, CXCL12 serves as a proliferation or cell survival factor, influences differentiation, induces adhesion and/or regulates cell migration. These functions are mediated by the two chemokine receptors, CXCR4 and CXCR7. Whereas CXCR4 is still viewed as the sole G-protein-activating and, hence, signaling receptor for CXCL12, CXCR7 is regarded as a non-classic scavenging or decoy receptor that modulates the function of CXCR4. However, this view might be too limited, since evidence has accumulated favoring a cell-type-specific mode of CXCL12 signaling. In addition to the “classic” CXCL12 signaling mode via CXCR4, CXCR4 and CXCR7 have to form a receptor unit for successful CXCL12 signaling in some cells. Moreover, examples exist whereby CXCL12 receptors split functions or switch roles, such that CXCR7 (instead of CXCR4) mediates signal transduction. The obvious lack of a universal mode of CXCL12 signaling urges a re-evaluation of the role of this chemokine in development, health and disease. This review depicts the exceptional characteristics of CXCL12-induced signal transduction in various cells and organs, points out remaining controversies and mentions consequences for therapeutic interventions.  相似文献   

19.
研究表明趋化因子及其受体在胚胎发育、干细胞迁移以及各种免疫反应中发挥重要作用,是许多生理及病理过程中细胞运动的重要因素。趋化因子受体CXCR4是一个由352个氨基酸构成的、7次跨膜的G蛋白偶联受体。趋化因子CXCL12为其特异性受体。研究发现,CXCR4/CXCL12在多种肿瘤中都有表达,在肿瘤的生长、血管生成、转移等方面发挥着重要作用。与正常组织相比,肿瘤组织及转移灶CXCR4高表达。因此,对CXCR4/CXCL12轴在肿瘤病生理中的作用机制进行进一步研究,很可能为肿瘤的治疗及对肿瘤转移的预防提供一个新的思路。我们现在就对其在肿瘤病生理中的作用做一综述。  相似文献   

20.
CXC趋化因子受体4(CXCR4)是最主要的趋化因子受体之一,在多种类型细胞中均有表达,包括淋巴细胞、造血干细胞、内皮细胞和肿瘤细胞。CXCR4与其配体——基质细胞衍生因子1(SDF-1)(也称CXCL12)结合,能介导多种与细胞趋化、细胞存活或增殖相关信号传导通路。CXCR4与SDF-1轴涉及肿瘤的恶性演进、血管生成、转移和存活。因此,阻断CXCR4与SDF-1轴及下游信号通路成为相关治疗的分子靶标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号