首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples.In the context of glioblastoma (GBM)1, the quest for effective biomarkers is vital given that GBM is the most aggressive primary brain tumor in adults and no curative treatment is currently available (1). GBM is characterized by extensive invasion into the brain parenchyma, a high proliferation rate, neo-angiogenesis and significant cellular and molecular heterogeneity. Current treatment involves neurosurgery, radiotherapy and chemotherapy, yet the median life expectancy of affected patients is less than fifteen months. Recent efforts have focused on targeting the vascular endothelial growth factor (VEGF) system which is critical for tumor angiogenesis, however GBM quickly develop escape mechanisms leading to tumor progression (2, 3). Previous work from our group demonstrated that GBMs adapt to anti-VEGF treatment via a metabolic switch in tumor cells toward increased glycolysis (4, 5). This was accompanied by increased hypoxia and tumor cell invasion, with little or no effect on tumor growth (4). In agreement with these preclinical studies, two large scale clinical trials addressing the impact of bevacizumab, a VEGF targeting antibody, in newly diagnosed GBM patients reported disappointing results: although progression free survival appeared to be improved, no effect on overall survival was observed (6, 7). The evaluation of such studies are complicated by the fact that anti-angiogenic agents affect blood vessel permeability thereby directly modulating neuroimaging parameters used to determine treatment effects (8, 9). Thus there is a need for molecular biomarkers to adequately determine treatment response to anti-angiogenic agents.MS-based proteomics (10, 11) is widely used in the field of cancer research in particular in the context of biomarker development including discovery and verification. The application of the selected reaction monitoring (SRM) approach to proteomics reinforced the importance of MS in biomarker development (1214). Indeed, SRM is a targeted proteomics approach that allows a precise and absolute quantification of previously selected marker candidates (15, 16). Moreover it can be applied in a supervised discovery phase for potential biomarkers (17, 18), i.e. the precise quantification of a wider range of selected biomarkers of interest by the use of stable isotope labeled (SIL) peptides in crude quality. Because of its high selectivity, sensitivity and accuracy, SRM, also named multiple reaction monitoring (MRM), is currently the reference method in targeted proteomics (14, 19).The aim of this study was to identify proteins that are altered by anti-angiogenic treatment, thereby providing biomolecular signatures of tumor response in GBM. Ultimately such protein markers could be evaluated for their utility as markers of efficacy that allow to discriminate responders from nonresponders. The study was focused on target proteins that may exhibit significant differences in protein expression reflecting the metabolic switch exhibited during anti-angiogenic therapy. An SRM workflow designed on a triple quadrupole platform (20), was developed and optimized in the context of GBM xenografts treated with bevacizumab in order to perform, in a supervised manner, a precise relative quantification of target proteins. We have previously shown that patient derived GBM xenografts developed in rodents faithfully reflect human pathology and allow a detailed analysis of the tumor and stromal compartments (4, 2124). Furthermore xenograft models facilitate the access to control samples as well as the possibility of controlled interventional studies (25). The results presented herein demonstrate the feasibility of SRM to precisely quantify small changes in protein concentration after treatment. We highlight the importance of peptide selection, data normalization and consideration of the variability of target proteins within complex biological samples before assessing their concentration changes in subsequent comparative studies. From an initial set of 100 candidates, we screened 74 proteins and identified 32 responsive to anti-angiogenic treatment. We propose malectin, calnexin, lactate dehydrogenase A (LDHA), and isocitrate dehydrogenase (IDH) as novel response markers to anti-angiogenic therapy.  相似文献   

2.
Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies.Introduction of new diagnostic assays in the clinical setting requires an operating pipeline to efficiently translate putative biomarkers into validated biomarkers. Despite the discovery platforms'' capacity to generate well populated lists of candidate biomarkers, very few proteins reach the patient bedside as fully fledged “FDA-approved” biomarkers. This is largely because of divergences between analytical needs and performances of the techniques available for candidate biomarker evaluation (1, 2).Candidate biomarker evaluation is a major process of the biomarker pipeline, positioned downstream of the biomarker discovery phase and necessary before clinical validation. Candidate evaluation aims to select, among hundreds of putative biomarkers, those of clinical relevance. Evaluation phase combines two steps which respectively consist in: (1) confirming a difference between physiological and pathological concentrations in biofluids (the so-called “qualification phase”) and (2) assessing the specificity of candidate biomarkers (the so-called “verification phase”) (1). Currently, because of its high throughput and high sensitivity, quantitative ELISA is the preferred assay format for studies evaluating biomarkers. However, as most candidates are likely to fail as relevant biomarkers, developing ELISA tests (with high quality antibodies) for all candidates is a financial burden for the diagnostics industry (3).Thus, there exists an urgent need to develop analytical methods capable of reliable candidate evaluation, at high throughput and reasonable cost. Selected Reaction Monitoring (SRM)1 mass spectrometry combined with stable isotope dilution (SID-SRM) has shown promise as a solution to this technological hurdle (4, 5). MS analysis in SRM mode offers the unique possibility to specifically and simultaneously monitor the signatures of hundreds of target peptides generated by trypsin digestion of proteins. Combined with isotope-labeled quantification standards (6), SRM can provide quantitative data for each protein targeted (5).Recently, in an effort to demonstrate the potential of SID-SRM for candidate biomarker evaluation, a multilaboratory study was set up to assess its analytical performances and potential transferability (7). Exogenous proteins, seven in all, were added to unfractionated plasma samples. The spiked samples were analyzed by eight independent laboratories using SRM and isotope-labeled peptides as standards. The results obtained clearly demonstrated the capacity of SID-SRM to specifically and precisely quantify protein biomarkers in plasma. However, the results also revealed that the protein digestion rate was highly variable between laboratories. This variability had a significant effect on peptide recovery and on the accuracy of protein quantification. As suggested by the authors, this type of bias could be avoided if properly folded isotope-labeled protein standards were used as quantification standards (7, 8).In 2007, we developed the PSAQ™ (Protein Standard Absolute Quantification) method, which uses full-length isotope-labeled proteins as internal standards for absolute quantitative MS analysis. We demonstrated that, in contrast with peptide standards, adding isotope-labeled proteins before sample digestion enables accurate protein quantification, even for proteins resistant to trypsin digestion (9, 10). In addition, we, and others, have shown that this type of protein standard (“PSAQ standard”) also corrects for protein losses that may occur during sample handling prior to trypsin digestion and liquid chromatography (LC)-MS analysis (1117). This latter feature is a particular advantage for MS analysis of blood biomarkers. Indeed, as plasma/serum are highly complex matrices and display a huge dynamic range, sample prefractionation must be performed to detect low-abundance protein biomarkers (4).In this study, we have tested a combination of the PSAQ strategy with SRM (PSAQ-SRM) for quantification of cardiovascular biomarkers in serum samples. Selected biomarkers include LDH-B, CKMB, myoglobin, and troponin I. For some of these validated biomarkers, a comparison of PSAQ-SRM data and ELISA results was performed on samples from patients having suffered myocardial infarction.  相似文献   

3.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

4.
Finding robust biomarkers for Parkinson disease (PD) is currently hampered by inherent technical limitations associated with imaging or antibody-based protein assays. To circumvent the challenges, we adapted a staged pipeline, starting from our previous proteomic profiling followed by high-throughput targeted mass spectrometry (MS), to identify peptides in human cerebrospinal fluid (CSF) for PD diagnosis and disease severity correlation. In this multicenter study consisting of training and validation sets, a total of 178 subjects were randomly selected from a retrospective cohort, matching age and sex between PD patients, healthy controls, and neurological controls with Alzheimer disease (AD). From ∼14,000 unique peptides displaying differences between PD and healthy control in proteomic investigations, 126 peptides were selected based on relevance and observability in CSF using bioinformatic analysis and MS screening, and then quantified by highly accurate and sensitive selected reaction monitoring (SRM) in the CSF of 30 PD patients versus 30 healthy controls (training set), followed by diagnostic (receiver operating characteristics) and disease severity correlation analyses. The most promising candidates were further tested in an independent cohort of 40 PD patients, 38 AD patients, and 40 healthy controls (validation set). A panel of five peptides (derived from SPP1, LRP1, CSF1R, EPHA4, and TIMP1) was identified to provide an area under curve (AUC) of 0.873 (sensitivity = 76.7%, specificity = 80.0%) for PD versus healthy controls in the training set. The performance was essentially confirmed in the validation set (AUC = 0.853, sensitivity = 82.5%, specificity = 82.5%). Additionally, this panel could also differentiate the PD and AD groups (AUC = 0.990, sensitivity = 95.0%, specificity = 97.4%). Furthermore, a combination of two peptides belonging to proteins TIMP1 and APLP1 significantly correlated with disease severity as determined by the Unified Parkinson''s Disease Rating Scale motor scores in both the training (r = 0.381, p = 0.038)j and the validation (r = 0.339, p = 0.032) sets. The novel panel of CSF peptides, if validated in independent cohorts, could be used to assist in clinical diagnosis of PD and has the potential to help monitoring or predicting disease progression.Parkinson disease (PD)1, the second most common neurodegenerative disease after Alzheimer disease (AD), afflicts roughly 2% of persons over the age of 65 years (1, 2). Currently, PD diagnosis is mainly based on observation of the cardinal motor indicators of the disease, patient response to drug treatment, and medical history (3, 4). There is an appreciable misdiagnosis rate (4), particularly at early disease stages. Additionally, no objective measure of disease progression or treatment effects has been established. Thus, objective, reliable, and reproducible biomarkers are clearly needed to aid in the diagnosis of PD and tracking or predicting the disease progression.The most sensitive tests developed to date are based on imaging modalities, which can detect functional and structural abnormalities even prior to the onset of motor dysfunction (5, 6). However, the usefulness of neuroimaging techniques is limited by high cost, limited accessibility, difficulty in reliable differentiation of PD from other atypical parkinsonian disorders and subjection to confounding factors such as medication and compensatory responses (47). Biochemical and molecular markers in cerebrospinal fluid (CSF) and other body fluids have also been actively investigated (5, 812). The most extensively studied candidate in CSF is probably α-synuclein, the major protein component of Lewy bodies and Lewy neurites, the pathological hallmarks of PD (2). The current consensus is that CSF α-synuclein concentrations are generally lower in patients with PD compared with controls (5, 810); the sensitivity and specificity, however, appear to be only moderate, and no correlation with PD severity or progression has been observed (8, 9). Notably, all these CSF protein markers are measured using antibody-based assays, which are often associated with relatively high variability, particularly when different detection techniques (different antibodies, sample preparation, calibrators, etc.) are used, leading to discrepant results across laboratories (5). It should also be stressed that this high variability in immunoassays is not unique to PD, because similar difficulty is encountered in AD and other related disorders (13, 14).One strategy to avoid the inherent technical limitations associated with antibodies is to use alternative techniques in which unique peptides are selected and precisely quantified with mass spectrometry (MS) techniques, for example, accurate inclusion mass screening (AIMS) (15) and selected reaction monitoring (SRM) (1618). To this end, in the last few years, we and others have utilized proteomic technologies to identify novel proteins and peptides associated with different disease states and stages (5, 6, 1925). Using brain tissue or CSF, these unbiased proteomic profiling studies have revealed disease-related alterations in hundreds of peptides derived from many proteins (1925). However, there are no quantitative assays for the majority of these candidate proteins/peptides, and development of such assays is limited by the lack of antibodies available for many of them. Thus, although a large library of potential peptide biomarkers has been developed, the vast majority never reach the stage of validation and clinical testing, hampered by the difficulty of de novo development of immunoassays, a process that is time consuming, prohibitively expensive to develop and very difficult to multiplex.In this study, we aim to establish a PD biomarker identification and verification pipeline, with the goal of prioritizing candidates and swiftly developing reliable quantitative assays. We focused on identifying peptides by SRM and AIMS, because these targeted proteomic technologies have been proposed as the basis of a viable biomarker pipeline (16) and have become a powerful tool in biomarker discovery because of their high sensitivity, accuracy and specificity. SRM, in particular, has emerged as an alternative to immunoaffinity-based measurements of defined protein sets with excellent reproducibility across different laboratories and instrument platforms (17, 18). The staged pipeline in the current investigation (Fig. 1) includes: (1) data-dependent and bioinformatic prioritization of thousands of candidate biomarkers identified in our previous profiling studies, (2) de novo development of antibody-free multiplex SRM assays to reliably measure tens to hundreds of peptides simultaneously, and (3) multiplex biomarker verification studies allowing identification and validation of models or panels of candidates in independent sample sets, two of which were used in this study.Open in a separate windowFig. 1.Overview of the workflow used for CSF peptide biomarker discovery and validation. AD, Alzheimer disease; AIMS, accurate inclusion mass screening; CO, healthy controls; DDA, data-dependent acquisition; PD, Parkinson disease; SRM, selected reaction monitoring.  相似文献   

5.
6.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

7.
8.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

9.
There is a mounting evidence of the existence of autoantibodies associated to cancer progression. Antibodies are the target of choice for serum screening because of their stability and suitability for sensitive immunoassays. By using commercial protein microarrays containing 8000 human proteins, we examined 20 sera from colorectal cancer (CRC) patients and healthy subjects to identify autoantibody patterns and associated antigens. Forty-three proteins were differentially recognized by tumoral and reference sera (p value <0.04) in the protein microarrays. Five immunoreactive antigens, PIM1, MAPKAPK3, STK4, SRC, and FGFR4, showed the highest prevalence in cancer samples, whereas ACVR2B was more abundant in normal sera. Three of them, PIM1, MAPKAPK3, and ACVR2B, were used for further validation. A significant increase in the expression level of these antigens on CRC cell lines and colonic mucosa was confirmed by immunoblotting and immunohistochemistry on tissue microarrays. A diagnostic ELISA based on the combination of MAPKAPK3 and ACVR2B proteins yielded specificity and sensitivity values of 73.9 and 83.3% (area under the curve, 0.85), respectively, for CRC discrimination after using an independent sample set containing 94 sera representative of different stages of progression and control subjects. In summary, these studies confirmed the presence of specific autoantibodies for CRC and revealed new individual markers of disease (PIM1, MAPKAPK3, and ACVR2B) with the potential to diagnose CRC with higher specificity and sensitivity than previously reported serum biomarkers.Colorectal cancer (CRC)1 is the second most prevalent cancer in the western world. The development of this disease takes decades and involves multiple genetic events. CRC remains a major cause of mortality in developed countries because most of the patients are diagnosed at advanced stages because of the reluctance to use highly invasive diagnostic tools like colonoscopy. Actually only a few proteins have been described as biomarkers in CRC (carcinoembryonic antigen (CEA), CA19.9, and CA125 (13)), although none of them is recommended for clinical screening (4). Proteomics analysis is actively used for the identification of new biomarkers. In previous studies, the use of two-dimensional DIGE and antibody microarrays allowed the identification of differentially expressed proteins in CRC tissue, including isoforms and post-translational modifications responsible for modifications in signaling pathways (58). Both approaches resulted in the identification of a collection of potential tumoral tissue biomarkers that is currently being investigated.However, the implementation of simpler, non-invasive methods for the early detection of CRC should be based on the identification of proteins or antibodies in serum or plasma (913). There is ample evidence of the existence of an immune response to cancer in humans as demonstrated by the presence of autoantibodies in cancer sera. Self-proteins (autoantigens) altered before or during tumor formation can elicit an immune response (1319). These tumor-specific autoantibodies can be detected at early cancer stages and prior to cancer diagnosis revealing a great potential as biomarkers (14, 15, 20). Tumor proteins can be affected by specific point mutations, misfolding, overexpression, aberrant glycosylation, truncation, or aberrant degradation (e.g. p53, HER2, NY-ESO1, or MUC1 (16, 2125)). In fact, a number of tumor-associated autoantigens (TAAs) were identified previously in different studies involving autoantibody screening in CRC (2628).Several approaches have been used to identify TAAs in cancer, including natural protein arrays prepared with fractions obtained from two-dimensional LC separations of tumoral samples (29, 30) or protein extracts from cancer cells or tissue (9, 31) probed by Western blot with patient sera, cancer tissue peptide libraries expressed as cDNA expression libraries for serological screening (serological analysis of recombinant cDNA expression libraries (SEREX)) (22, 32), or peptides expressed on the surface of phages in combination with microarrays (17, 18, 33, 34). However, these approaches suffer from several drawbacks. In some cases TAAs have to be isolated and identified from the reactive protein lysate by LC-MS techniques, or in the phage display approach, the reactive TAA could be a mimotope without a corresponding linear amino acid sequence. Moreover, cDNA libraries might not be representative of the protein expression levels in tumors as there is a poor correspondence between mRNA and protein levels.Protein arrays provide a novel platform for the identification of both autoantibodies and their respective TAAs for diagnostic purposes in cancer serum patients. They present some advantages. Proteins printed on the microarray are known “a priori,” avoiding the need for later identifications and the discovery of mimotopes. There is no bias in protein selection as the proteins are printed at a similar concentration. This should result in a higher sensitivity for biomarker identification (13, 35, 36).In this study, we used commercially available high density protein microarrays for the identification of autoantibody signatures and tumor-associated antigens in colorectal cancer. We screened 20 CRC patient and control sera with protein microarrays containing 8000 human proteins to identify the CRC-associated autoantibody repertoire and the corresponding TAAs. Autoantibody profiles that discriminated the different types of CRC metastasis were identified. Moreover a set of TAAs showing increased or decreased expression in cancer cell lines and paired tumoral tissues was found. Finally an ELISA was set up to test the ability of the most immunoreactive proteins to detect colorectal adenocarcinoma. On the basis of the antibody response, combinations of three antigens, PIM1, MAPKAPK3, and ACVR2B, showed a great potential for diagnosis.  相似文献   

10.
11.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

12.
13.
14.
Decomposing a biological sequence into its functional regions is an important prerequisite to understand the molecule. Using the multiple alignments of the sequences, we evaluate a segmentation based on the type of statistical variation pattern from each of the aligned sites. To describe such a more general pattern, we introduce multipattern consensus regions as segmented regions based on conserved as well as interdependent patterns. Thus the proposed consensus region considers patterns that are statistically significant and extends a local neighborhood. To show its relevance in protein sequence analysis, a cancer suppressor gene called p53 is examined. The results show significant associations between the detected regions and tendency of mutations, location on the 3D structure, and cancer hereditable factors that can be inferred from human twin studies.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]  相似文献   

15.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

16.
17.
18.
Age-related macular degeneration (AMD) causes severe vision loss in the elderly; early identification of AMD risk could help slow or prevent disease progression. Toward the discovery of AMD biomarkers, we quantified plasma protein Nε-carboxymethyllysine (CML) and pentosidine from 58 AMD and 32 control donors. CML and pentosidine are advanced glycation end products that are abundant in Bruch membrane, the extracellular matrix separating the retinal pigment epithelium from the blood-bearing choriocapillaris. We measured CML and pentosidine by LC-MS/MS and LC-fluorometry, respectively, and found higher mean levels of CML (∼54%) and pentosidine (∼64%) in AMD (p < 0.0001) relative to normal controls. Plasma protein fructosyl-lysine, a marker of early glycation, was found by amino acid analysis to be in equal amounts in control and non-diabetic AMD donors, supporting an association between AMD and increased levels of CML and pentosidine independent of other diseases like diabetes. Carboxyethylpyrrole (CEP), an oxidative modification from docosahexaenoate-containing lipids and also abundant in AMD Bruch membrane, was elevated ∼86% in the AMD cohort, but autoantibody titers to CEP, CML, and pentosidine were not significantly increased. Compellingly higher mean levels of CML and pentosidine were present in AMD plasma protein over a broad age range. Receiver operating curves indicate that CML, CEP adducts, and pentosidine alone discriminated between AMD and control subjects with 78, 79, and 88% accuracy, respectively, whereas CML in combination with pentosidine provided ∼89% accuracy, and CEP plus pentosidine provided ∼92% accuracy. Pentosidine levels appeared slightly altered in AMD patients with hypertension and cardiovascular disease, indicating further studies are warranted. Overall this study supports the potential utility of plasma protein CML and pentosidine as biomarkers for assessing AMD risk and susceptibility, particularly in combination with CEP adducts and with concurrent analyses of fructosyl-lysine to detect confounding factors.Age-related macular degeneration (AMD)1 is a progressive, multifactorial disease and a major cause of severe vision loss in the elderly (1). Deposition of debris (drusen) in the macular region of Bruch membrane, the extracellular matrix separating the choriocapillaris from the retinal pigment epithelium (RPE), is an early, hallmark risk factor of AMD. The disease can progress to advanced dry AMD (geographic atrophy), which is characterized by regional degeneration of photoreceptor and RPE cells, or to advanced wet AMD (choroidal neovascularization (CNV)), which is characterized by abnormal blood vessels growing from the choriocapillaris through Bruch membrane beneath the retina. CNV accounts for over 80% of debilitating vision loss in AMD; however, only 10–15% of AMD cases progress to CNV.There is growing consensus that AMD is an age-related inflammatory disease involving dysregulation of the complement system; however, triggers of the inflammatory response have yet to be well defined. Oxidative stress appears to be involved as smoking significantly increases the risk of AMD (2), antioxidant vitamins can selectively slow AMD progression (3), and a host of oxidative protein and DNA modifications have been detected at elevated levels in AMD Bruch membrane, drusen, retina, RPE, and plasma (411). Oxidative protein modifications like carboxyethylpyrrole (CEP) and Nε-carboxymethyllysine (CML), both elevated in AMD Bruch membrane, stimulate neovascularization in vivo (12, 13), suggesting possible roles in CNV. Other studies have shown that mice immunized with CEP protein modifications develop an AMD-like phenotype (14). Accordingly oxidative modifications may be catalysts or triggers of AMD pathology (6).AMD has long been hypothesized to be a systemic disease (15) based in part on the presence of retinal drusen in patients with membranoproliferative glomerulonephritis type II (16) and systemic complement activation in AMD (17). Support for this hypothesis also comes from mounting evidence that advanced glycation end products (AGEs) may play a role in AMD (4, 5, 7, 18, 19). AGEs are a heterogeneous group of mostly oxidative modifications resulting from the Maillard nonenzymatic glycation reaction that have been associated with age-related diseases and diabetic complications (20, 21). In 1998, CML was the first AGE to be found in AMD Bruch membrane and drusen (4). Other AGEs have since been detected in AMD ocular tissues (5, 7, 18) and in Bruch membrane, drusen, RPE, and choroidal extracellular matrix from healthy eyes (6, 22). CML, a nonfluorescent AGE, and pentosidine, a fluorescent cross-linking AGE, increase with age in Bruch membrane (18, 23). Receptors for AGEs (RAGE and AGE-R1) appear elevated on RPE and photoreceptor cells in early and advanced dry AMD (7) especially in RPE overlying drusen-like deposits on Bruch membrane (19). AGE-R3, also known as galectin-3, is elevated in AMD Bruch membrane (24).Although AMD susceptibility genes now account for over 50% of AMD cases (25), many individuals with AMD risk genotypes may never develop advanced disease with severe vision loss. Nevertheless the prevalence of advanced AMD is increasing (26). Toward the discovery of better methods to detect those at risk for advanced AMD, we quantified CML and pentosidine in plasma proteins from AMD and control patients and compared their discriminatory accuracy with plasma CEP biomarkers. CEP biomarkers have been shown to enhance the AMD predictive accuracy of genomic AMD biomarkers (11). This report shows CML and pentosidine to be elevated in AMD plasma proteins and demonstrates their potential biomarker utility in assessing AMD risk and susceptibility especially in combination with CEP biomarkers.  相似文献   

19.
20.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including >90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database, which we anticipate will become a valuable resource for the IMS community.Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS)1 is an emerging technique that can be described as a multi-color molecular microscope as it allows visualizing the distribution of many molecules as mass to charge (m/z) signals in parallel in situ (1). Originally described some 15 years ago (2) the method has been successfully adapted to different analyte classes including small molecule drugs (3), metabolites (4), lipids (5), proteins (6), and peptides (7) using e.g. formalin fixed paraffin embedded (FFPE) as well as fresh frozen tissue (8). Because the tissue stays intact in the process, MALDI IMS is compatible with histochemistry (9) as well as immunohistochemistry and thus adds an additional dimension of molecular information to classical microscopy based tissue analysis (10). Imaging of proteins is appealing as it conceptually allows determining the localization and abundance of proteoforms (11) that naturally occur in the tissue under investigation including modifications such as phosphorylation, acetylation, or ubiquitination, protease mediated cleavage or truncation (12). Therefore a proteinous m/z species detected by MALDI IMS can be viewed as an in situ molecular probe of a particular biological process. In turn, m/z abundance patterns that discriminate different physiological or pathological conditions might be used as diagnostic or even prognostic markers (13, 14). In recent years, MALDI IMS of proteins has been successfully applied to different cancer types from the brain (15), breast (16, 17), kidney (18), prostate (19), and skin (20). Furthermore, the technique has been applied in the context of colon inflammation (21), embryonic development (22), Alzheimer''s disease (23), and amyotrophic lateral sclerosis (24). With a few notable exceptions (13, 14, 1618, 20, 2430), the identity of the proteins constituting the observed characteristic m/z patters has generally remained elusive. This not only precludes the validation of the putative biomarkers by, for example, immunohistochemistry, but also the elucidation of the biological processes that might underlie the observed phenotype.Here, we introduce a straightforward extraction and identification method for proteins embedded in the MALDI matrix layer that represent the molecular species amenable to MALDI IMS. Using a bottom-up proteomics approach including tryptic digestion and liquid chromatography tandem mass spectrometry (LC-MS/MS), we first created an inventory list of proteins derived from this layer, which we term the MALDI matrix proteome. Although the bottom-up approach breaks the link between the identified proteins and the m/z species detected in MALDI IMS, the list of identified proteins serves as the pool of proteins from which all potential biomarkers are most likely derived. Indeed we detected >90% of all human MALDI IMS biomarkers reported in the literature by analyzing just ten human tissues. In addition, the results demonstrate that the same inventory can be used as a focused database for direct top-down sequencing and identification of proteins extracted from the MALDI matrix layer. The proposed method is generic and can be applied to any MALDI IMS study, which is why we believe that one of the major challenges in identifying MALDI IMS biomarkers has now been overcome. In addition, we provide a list of all proteins and peptides identified in the MALDI matrices and tissues studied here as well as a comprehensive list of m/z species identified in the literature dealing with MALDI imaging of humans and rodents. This information has been compiled in MaTisse (http://www.wzw.tum.de/bioanalytik/matisse), a new publically available and searchable database, which we believe will become a valuable tool for the MALDI imaging community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号