首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischaemum rugosum Salisb. (Saramolla grass) is a noxious weed of rice that is difficult to control by chemical or mechanical means once established. A study was conducted to determine the effect of light, temperature, salt, drought, flooding, rice residue mulch, burial depth, and pre-emergence herbicides on seed germination and emergence of I. rugosum. Germination was stimulated by light and inhibited under complete darkness. Optimum temperature for germination was 30/20°C (97.5% germination). Germination reduced from 31 to 3.5% when the osmotic potential of the growing medium decreased from -0.1 to -0.6 MPa and no germination occurred at -0.8 MPa. Germination was 18 and 0.5% at 50 and 100 mM NaCl concentrations, respectively, but was completely inhibited at 150 mM or higher. Residue application at 1–6 t ha-1 reduced weed emergence by 35–88% and shoot biomass by 55–95%. The efficacy of pre-emergence herbicides increased with increasing application rates and decreased with increasing rice residue mulching. The efficacy of herbicides was in the order of oxadiazon> pendimethalin> pretilachlor. At 6 t ha-1, all herbicides, regardless of rates, did not differ from the control treatment. I. rugosum seeds buried at 2 cm or deeper did not emerge; however, they emerged by 4.5 and 0.5% at 0.5 and 1 cm depths, respectively, compared to the 39% germination for soil surface seeding. Flooding at 4 DAS or earlier reduced seedling emergence and shoot biomass while flooding at 8 DAS reduced only seedling emergence. The depth and timing of flooding independently reduced root biomass. Flooding at 4 and 6 cm depths reduced the root biomass. Relative to flooding on the day of sowing, flooding at 8 DAS increased root biomass by 89%. Similarly, flooding on the day of sowing and at 2 DAS reduced the root–shoot biomass ratio. Under the no-flood treatment, increasing rates of pretilachlor from 0.075 to 0.3 kg ai ha-1 reduced weed emergence by 61–79%. At the flooding depth of 2–4 cm, pretilachlor reduced weed emergence and shoot and root biomass, but the differences across rates were non-significant. Information generated in this study will be helpful in developing integrated weed management strategies for managing this weed.  相似文献   

2.
Portulaca oleracea , a C4 species, is reported to be a serious weed in 45 crops in 81 countries. Experiments were conducted in the laboratory, the screenhouse and the field to determine the influence of environmental factors on seed germination and seedling emergence of P. oleracea . In the laboratory, germination in the dark was low and was not influenced by the tested temperatures (35/25°C, 30/20°C and 25/15°C alternating day/night temperatures). In the light/dark regime, however, germination was lower at 25/15°C and 35/25°C than at 30/20°C (70%, 75% and 81% germination, respectively). In conditions of 106 mM sodium chloride or −0.34 MPa osmotic potential, seeds germinated to only 50% of maximum germination of the control. Germination was not influenced by buffered pH solutions ranging from 5 to 9. In the screenhouse, germination was greatest for seeds placed on the soil surface, but emergence declined with increasing seed burial depth in soil; no seedlings emerged from the depth of 2 cm. Seedling emergence and seedling dry matter were markedly reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 t ha−1. In the field, seedling emergence of P. oleracea was greater under zero till (ZT) (17–20%) than under minimum tillage (6–10%), a likely reflection of low seed burial and exposure of seeds to light with a ZT system. This study identifies some of the factors enabling P. oleracea to be a widespread weed in the humid tropics, and the information could contribute to improved control strategies.  相似文献   

3.
Pepper seeds are slow to germinate and emergence is often non-uniform and incomplete, reducing gains from this cash crop. This study investigated the effects of pineapple stem- derived protease (stem bromelain) based priming on pepper seed germination in relation to reserve mobilization (specifically, proteins and amino acids), germination, emergence and plant growth. These parameters were compared across two controls, (1) unsoaked seeds and (2) seeds soaked in deionized water, and seeds soaked in pineapple stem bromelain crude extract (treatment). Seeds were soaked in bromelain crude extract possessing a proteolytic activity of 6.25 tU or deionized water (first control) for 3 h at 35 °C. Light microscopy revealed an abundance of protein bodies in the endosperm of the seeds prior to imbibition. When observed for a period of 96 h, these bodies were progressively degraded, with the rate of this degradation being fastest in bromelain-treated seeds. Quantitative analysis of protein levels confirmed this observation: 17.2 mg proteins/g FW at 120 h after priming in bromelain-treated seeds compared with 22.1 mg/g FW in controls (average). The bromelain treatment also increased levels of free amino acids from 3.9 mg/g FW in the controls to 4.6 mg/g FW after 120 h of imbibition. Germination and emergence percentages were initially higher in bromelain-treated seeds: 92.0% germination in bromelain-treated seeds vs. ~ 52.2% in the controls at 18 d; 100% emergence in protease-treated seeds vs. ~ 72.2% in the controls at 18 d. However, these parameters were comparable across the treatment and the controls at 28 d. Importantly, plant fresh and dry weights were significantly higher when seeds were primed with bromelain. The results suggest the use of bromelain extracts for priming pepper seeds based on their proteolytic activity, since germination is dependent on the availability of crude protein and essential amino acids. The benefits of bromelain seed priming appear to translate into improved seedling growth as well.  相似文献   

4.
Bin Wen 《PloS one》2015,10(10)
Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant.  相似文献   

5.
Background and Aims Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants.Methods Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory.Key Results At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13–35 % higher) in all species except two. Survival and establishment was possible for 60–75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success.Conclusions The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the plant community.  相似文献   

6.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

7.
Laboratory and greenhouse studies were conducted to determine the effects of key environmental factors on germination and seedling emergence of the invasive weed Ambrosia artemisiifolia L. (common ragweed) collected from Mudanjiang (temperate climate), Nanjing (temperate–subtropical) and Nanchang (subtropical) in China. Germination of seeds occurred at temperatures ranging from 5 to 40°C, under both a 12‐h photoperiod and continuous darkness. Germination success exceeded 48% in solutions with pH values between 4 and 12, with maximum rates occurring in distilled water at pH 5.57. Germination was greatly reduced in solutions with osmotic potentials below ?0.8 MPa. Accordingly, the final germination ratio exceeded 69% at <200 mmol/L NaCl, but only reached 8% at 400 mmol/L NaCl. Emergence was greater than 75% at burial seed depths of 1–4 cm; no seedlings emerged from a soil depth of 8 cm. Seeds collected from Mudanjiang, Nanjing and Nanchang had very similar germination traits, with the main differences occurring in relation to temperature. The great germination success of common ragweed over highly variable conditions throughout its Chinese distribution range explains its successful large‐scale invasion.  相似文献   

8.
Germination response to fluctuating temperatures is a mechanism by which seeds detect gaps in vegetation canopies and depth of burial in soil, and it is very important for plants. Thus, studies on the effect of fluctuating temperature on germination at the community level are valuable for understanding community structure and biodiversity maintenance. We determined the effects of two alternating temperatures (5/25°C and 10/20°C) and one constant temperature (15°C) on seed germination of 445 species in a grassland community on the eastern Tibet Plateau. Seed mass was determined for each species, and data on habitat, type of life cycle, altitudinal distribution and functional group (graminoids or forbs) were obtained from the literature. Taking all species into account, alternating temperatures increased germination percentages regardless of amplitude. Overall, species growing in disturbed ground showed a significant germination response to temperature fluctuation, but those living in Alpine/subalpine meadow, forest margin /scrub, marshland and dry sunny slope habitats did not. Species distributed only at high elevations (>2000m) did not show a significant germination response to temperature fluctuation, whereas those occurring at both high and low elevations had a significant positive response. Germination of annuals/biennials was significantly promoted by 5/25°C, but not by 10/20°C, whereas germination of perennials was significantly promoted by both 5/25°C and 10/20°C. Small-seeded species were more likely than large-seeded species to respond positively to fluctuating temperatures. Germination of forbs had a positive response to temperature fluctuation, but germination of graminoids did not. Regeneration ability by seeds for about 36% of the species studied in the grassland can be increased by temperature fluctuation. The differential response among species to alternating vs. constant temperatures helps maintain community structure and biodiversity. A positive germination response to temperature fluctuation can partly explain why there are more forbs in degraded meadows.  相似文献   

9.
Apple seeds (Malus domestica Borkh. cv Golden Delicious) were stratified at 5 and 15°C for various lengths, weighed, and soluble protein of axis and cotyledon tissue was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Only seeds treated at 5°C germinated; seeds treated at 15°C did not germinate. Optimal germination required 63 days of stratification. Excised embryos required less stratification time for germination than intact seeds. When stratification was less than 35 days, the resulting seedlings from 5°C stratified embryos were dwarfed and epinastic. After 63 days of stratification, axes from 5 and 15°C treated intact seeds had increased in fresh weight by 72 and 28% (w/w), respectively. The dry weights of the axes did not change significantly and both fresh and dry weights of cotyledons remained unchanged during stratification. Total soluble protein in axes and cotyledons changed very little during stratification. However, axis polypeptide profiles changed. Most obvious was the occurrence of a new polypeptide and the increase of four other clearly identifiable polypeptides during 5°C treatment. The levels of the five most predominant axis proteins decreased at the same time. We observed no changes in the profiles of soluble cotyledon proteins. Control seeds kept at −10°C showed none of the reported changes.  相似文献   

10.
Decoated pepper (Capsicum annuum L. cv Early Calwonder) seeds germinated earlier at 25°C, but not at 15°C, compared to coated seeds. The seed coat did not appear to impose a mechanical restriction on pepper seed germination. Scarification of the endosperm material directly in front of the radicle reduced the time to germination at both 15°C and 25°C.

The amount of mechanical resistance imposed by the endosperm on radicle emergence before germination was measured using the Instron Universal Testing Machine. Endosperm strength decreased as imbibition time increased. The puncture force decreased faster when seeds were imbibed at 25°C than at 15°C. The reduction in puncture force corresponded with the ability of pepper seeds to germinate. Most radicle emergence occurred at 15°C and 25°C after the puncture force was reduced to between 0.3 and 0.4 newtons.

Application of gibberellic acid4+7 (100 microliters per liter) resulted in earlier germination at 15°C and 25°C and decreased endosperm strength sooner than in untreated seeds. Similarly, high O2 concentrations had similar effects on germination earliness and endosperm strength decline as did gibberellic acid4+7, but only at 25°C. At 15°C, high O2 concentrations slowed germination and endosperm strength decline.

  相似文献   

11.
The percentage germination of seeds of parsley cv. Imperial Curled was higher in the light than in the dark, the high temperature limits for germination being 30 and 28°C for light and dark respectively. At the higher temperatures, the germination rate was slower in the dark. At 30°C, treatment with a gibberellin A4/7 mixture at 2 × 10–4 M partially alleviated the inhibiting effect of darkness on the germination percentage. Pre-incubation of parsley seeds at 35°C in the dark for 30 h increased the rate, but decreased the percentage, of germination of seeds incubated at 15°C in the light. Germination and seedling emergence studies were made on seed harvested from four different umbel positions. Although heavier seeds were produced from primary umbels than from other umbel orders, they were less viable as measured by seedling emergence in the glasshouse. The rate of emergence was decreased with increasing umbel order i.e. with later seed development: this was reflected in subsequent seedling weights, with seedlings from quarternary umbel seeds being about half the weight of those from primary umbel seeds. The upper temperature limit for dark germination was only slightly affected by umbel order, with quarternary umbel seeds being the most thermo-inhibited.Abbreviations BA N6-benzyladenine - GA4/7 a mixture of gibberellins A4 and A7 - SD8339 6-benzyl-amino-9-(tetrahydropyran-2-yl)-9H-purine  相似文献   

12.
Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C.  相似文献   

13.
Recruitment for many arid‐zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less‐dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well‐watered (Ψsoil = −0.15 MPa) and water‐limited (Ψsoil = −0.35 MPa) conditions. Success at three key recruitment stages—seed germination, emergence, and survival—and final seed viability of ungerminated seeds was assessed. For all species, less‐dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35–40°C) under water‐limited conditions caused 95%–100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30–40°C) and well‐watered conditions, loss of viability was greater from the less‐dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress‐driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid‐zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.  相似文献   

14.
Ephedra alata Decne is a perennial shrub and it is a very effective sand-binder. In Saudi Arabia, the species is associated with sand dunes formation, especially the mobile, non-saline and low moisture content ones. Its geographical distribution in Saudi Arabia includes the Northern, Eastern and Central regions. The aims of this study were to determine the effects of temperature, water potential and Sodium Chloride on germination of E. alata. Seeds were collected from King Khalid Centre of Wildlife Research and Development at Thumama (80 km north east of Riyadh), Saudi Arabia. Seeds were germinated at four alternating temperature regimes (8/22; 9/23; 13/27 and 18/35 °C). Seeds were also germinated under stress of aqueous Polyethylene Glycol (PEG) solutions mixed to create water potentials of 0; −0.3; −0.6; −1.2 and −1.5 MPa. Seed were also germinated in Sodium Chloride solutions of 0, 0.05, 0.1, 0.2 and 0.3 mol l−1. Optimum germination was attained at 13/28 °C that corresponds to temperatures prevailing during spring time. Seeds germinated in Polyethylene Glycol solutions exhibited significantly lower germination than control especially when water potential fell below −0.3 MPa. Germination was also negatively affected by 0.1 mol l−1 Sodium Chloride solution or above. Results indicated that the germination temperature responses of the nondormant seeds synchronize the event of germination with the season when environmental conditions are more favorable for subsequent growth and seedling establishment. Germination was also sensitive to both water potential and salinity.  相似文献   

15.
Sand burial, persistent seed bank and soil water content (SWC) are three factors that potentially can affect regeneration in sand dune plant populations. To evaluate the effects of these three factors on population regeneration of Eremosparton songoricum, a rare and endangered legume, we investigated seed germination, seedling emergence and seedling survival in greenhouse and controlled field experiments in different sand dunes microsites. Freshly matured seeds are physically dormant, and the highest germination was only 9.3?±?5.8% at 25/10°C. Seed germination occurred at burial depths from 0 to 10 cm, but the maximum depth from which seedlings emerged was 6 cm; from 1 to 6 cm, the deeper the burial, the lower the percentage of seedling emergence. Only 36.2% of the total soil seed banks occurred at depths of 0?C6 cm. For artificially sown seeds at different dune microsites, mean seedling emergence percentage was 6.8%. Of 150 seedlings that emerged in the field investigation at the study site, only those germinating in flat sandy areas survived, and mean survival percentage was only 2.0%. Thus, the proportion of non-dormant seeds in soil seed banks that developed into seedlings and survived to the end of the growing season was only 0.2%. Minimum SWC for seed germination, seedling emergence and seedling survival was 2.0%. During monitoring of emergent seedlings in the field, low seedling recruitment was at least partly due to the rate of root extension (1.6?±?0.3 cm day?1) into the sandy soil, which was slower than that of the downward movement of plant-available moisture (2.8?±?0.6 cm day?1). Thus, population regeneration under natural conditions rarely occurred via sexual reproduction, owing to the limited water resources available for seedling establishment. Rational field seeding practices, including manually scarified or dry stored seeds before sowing, sowing the seeds at right time and suitable place, are suggested for ecological restoration of endangered E. songoricum populations.  相似文献   

16.
Abstract Generalist avian frugivores often play an important role in the processes of naturalization and invasion for plants introduced for ornamental and landscaping purposes. We investigated the potential role of Australian birds in the current invasion of riparian habitats and coastal wetlands by the ornamental Schinus terebinthifolius Raddi. Feeding trials in captivity predicted silvereyes (Zosterops lateralis Latham) as dispersal vectors for this weed. There were no differences in either total germination or germination rate between seeds voided by caged silvereyes and those from which exocarps had been removed manually. Germination of seeds incubated within entire fruits was minimal, as was emergence from intact fruits in a field experiment. Seed banks of S. terebinthifolius were relatively transient under field conditions, with no seeds surviving for 9 months. Since fewer than 5% of the seeds in sown whole fruits gave rise to seedlings (cf. 20–42% for sown bare seeds), we conclude that recruitment potential of S. terebinthifolius is highly dependent upon the consumption of its fruits by frugivores.  相似文献   

17.

Background and Aims

The importance of thermal thresholds for predicting seed dormancy release and germination timing under the present climate conditions and simulated climate change scenarios was investigated. In particular, Vitis vinifera subsp. sylvestris was investigated in four Sardinian populations over the full altitudinal range of the species (from approx. 100 to 800 m a.s.l).

Methods

Dried and fresh seeds from each population were incubated in the light at a range of temperatures (10–25 and 25/10 °C), without any pre-treatment and after a warm (3 months at 25 °C) or a cold (3 months at 5 °C) stratification. A thermal time approach was then applied to the germination results for dried seeds and the seed responses were modelled according to the present climate conditions and two simulated scenarios of the Intergovernmental Panel on Climate Change (IPCC): B1 (+1·8 °C) and A2 (+3·4 °C).

Key Results

Cold stratification released physiological dormancy, while very few seeds germinated without treatments or after warm stratification. Fresh, cold-stratified seeds germinated significantly better (>80 %) at temperatures ≥20 °C than at lower temperatures. A base temperature for germination (Tb) of 9·0–11·3 °C and a thermal time requirement for 50 % of germination (θ50) ranging from 33·6 °Cd to 68·6 °Cd were identified for non-dormant cold-stratified seeds, depending on the populations. This complex combination of thermal requirements for dormancy release and germination allowed prediction of field emergence from March to May under the present climatic conditions for the investigated populations.

Conclusions

The thermal thresholds for seed germination identified in this study (Tb and θ50) explained the differences in seed germination detected among populations. Under the two simulated IPCC scenarios, an altitude-related risk from climate warming is identified, with lowland populations being more threatened due to a compromised seed dormancy release and a narrowed seed germination window.  相似文献   

18.
Cyperus difformis , Cyperus iria and Fimbristylis miliacea are troublesome annual sedges of rice grown in many countries. Laboratory and screenhouse experiments were conducted to determine the effects of temperature, light, salt and water stress, seed burial depth, and flooding time, duration and depth on germination, emergence and growth of these three species. Germination of all the three species was stimulated by light and warm fluctuating temperatures. Germination of C. difformis was influenced to a greater degree by increasing salt and water stress than C. iria and F. miliacea . In all three species, seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of ≥1 cm. Flooding, although not continuous or deep, had a suppressive effect on emergence and growth of C. iria and F. miliacea . Intermittent flooding to shallow depths, however, was less effective in controlling C. difformis ; deep flooding was needed to suppress growth of C. difformis seedlings. When the flooding was delayed to 21 days after sowing, there was little growth reduction in all three species.  相似文献   

19.
Changes in germination, seedling growth, respiration, response to applied gibberellic acid, and glucose-U-14C utilization were investigated in partially dormant wheat (Triticum aestivum L., Pa 151 × 107) seeds which were stored under various conditions for periods up to 1 year. Only seeds stored at −20 C and 12.4% moisture maintained partial dormancy, which was overcome by germinating in 10−3m gibberellic acid. Germination and seedling growth of seeds stored at 25 C and 15.1% moisture declined within 12 weeks and the percentage of seeds infected with storage fungi increased. Gibberellic acid produced faster growing seedlings, particularly from those seeds with partial dormancy, but did not overcome growth reduction which was caused by deterioration. Seeds kept under laboratory conditions (B), 25 C and 12.1% moisture (C), and 25 C and 15.1% moisture (D) for 12 weeks utilized 35, 55, and 80% less glucose, respectively, than those stored at −20 C and 12.4% moisture (A). Seeds stored under B and C consistently had higher germination, growth, and respiratory rates than seeds from A and D. The respiratory rate declined as deterioration advanced under D. Respiratory quotients ranged from 1.0 for seeds stored under A to 1.6 for seeds stored under D.  相似文献   

20.
Present investigations report the presence of strigolactones (SLs) and photomodulation of their biosynthesis in sunflower seedlings (roots, cotyledons and first pair of leaves) during early phase of seedling development. Qualitative analyses and characterization by HPLC, ESI-MS and FT-IR revealed the presence of more than one type of SLs. Orobanchyl acetate was detected both in roots and leaves. Five-deoxystrigol, sorgolactone and orobanchol were exclusively detected in seedling roots. Sorgomol was detectable only in leaves. HPLC eluted fraction from seedling roots and leaves co-chromatographing with GR24 (a synthetic SL) could also bring about germination in Orobanche cernua (a weed) seeds, which are established to exhibit SL – mediated germination, thereby indicating the SL identity of the eluates using this bioassay. SLs accumulation was always more in the roots of light-grown seedlings, it being maximum at 4 d stage. Although significant activity of carotenoid cleavage dioxygenase (CCD, the enzyme critical for SL biosynthesis) was detected in 2 d old seedling roots, SLs remained undetectable in cotyledons at all stages of development and also in the roots of 2 d old light and dark-grown seedlings. Roots of light-grown seedlings showed maximum CCD activity during early (2 d) stage of development, thereby confirming photomodulation of enzyme activity. These observations indicate the migration of a probable light-sensitized signaling molecule (yet to be identified) or a SL precursor from light exposed aerial parts to the seedling roots maintained in dark. Thus, a photomodulation and migration of SL precursor/s is evident from the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号