共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to detect biochemical diversity in animal venoms has wide-ranging implications for a diverse array of scientific disciplines. Matrix-assisted laser desorption time-of-flight mass spectrometry (and, for comparative purposes, isoelectric focusing) were used to characterize venoms from a geographically diverse sample of Trimeresurus stejnegeri ( n < 229) from Taiwan. Previously unrealized levels of heterogeneity were detected in venom phospholipase A(2) isoforms (PLA(2)) and in whole venom profiles. Geographic variation in venom was primarily between Taiwan and two Pacific islets. Despite the common assumption that venom variation is a product of neutral molecular evolution, statistical testing failed to link venom variation with phylogenetic descent convincingly. Instead, pronounced differences in venom composition may be the product of natural selection for regional diets or of independent founder effects. More data are required on the functional differences between the isoforms to distinguish between these alternatives. 相似文献
2.
The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of bacteriocins was investigated. A 30-s water wash of the sample on the MALDI-TOF MS probe was effective in removing contaminants of the analyte. This method was used for rapid detection of nisin, pediocin, brochocin A and B, and enterocin A and B from culture supernatants and for detection of enterocin B throughout its purification. 相似文献
3.
BackgroundWith long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. Methodology/Principal FindingsWe prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. Conclusions/SignificanceMALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future. 相似文献
4.
Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent differences among the three methods ( p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods may be effective and reliable alternatives to traditional urine culture. 相似文献
5.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) with delayed extraction is utilized in linear, reflected-ion and post-source decay (PSD) modes to directly characterize enzymes being developed for use in a petroleum desulfurization process. The DNA sequence for the genes isolated from Rhodococcussp. strain IGTS8 that produce three of the four enzymes under study had been previously reported with a discrepancy in residue assignments for one of the enzymes, dsz-C. The use of proteolytic digests followed by MALDI/TOF/MS with delayed extraction in the reflected-ion mode provided sequence-specific information with mass accuracies exceeding 40 ppm over a range of masses and signal-to-noise values. Peptide mapping of >80% of the residues was accomplished for all four proteins. The use of PSD established the true sequence for dsz-C, resolving the discrepancy in the literature. A posttranslational loss of N-terminal methionine was observed for each of the four proteins in linear MALDI/MS and was reconfirmed by peptide mapping for three of the proteins. 相似文献
6.
Nine Corallococcus isolates and three type strains of Corallococcus species were characterized by Intact Cell Mass Spectrometry using Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. The resulting phenetic clustering was compared to the phylogenetic grouping based upon sequences of two housekeeping genes. The three dendrograms of relatedness resembled each other in that the isolates were highly similar to the type strains of Corallococcus exiguus and Corallococcus coralloides, while Corallococcus macrosporus and Myxococcus xanthus were more distantly related. While certain pairs of organisms were recovered by spectrometry and genes sequence analysis, others were detected by two of the three approaches. The degree of similarity determined by sequence analysis of the two genes was not higher than that revealed by MALDI-TOF analysis. The results show that the spectral profile, consisting of about 25 to 45 masses ranging between 2 and 20 kDa, have indeed taxonomic significance, confirming literature data that ribosomal proteins and certain housekeeping proteins are responsible for the masses obtained. Provided the availability of a database of type strains, MALDI-TOF analysis of unknown strains appears to be a rapid and inexpensive method to taxonomically cluster environmental isolates, expanding the spectrum to strains other than those of medical importance predominantly investigated so far. 相似文献
7.
Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. 相似文献
8.
The use of peptide mass fingerprinting with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was demonstrated to identify and phenotypically characterize toluene-degrading bacteria via biomarkers of degradation and taxonomical classification. Pseudomonas putida F1, P. mendocina KR1, and Burkholderia sp. JS150 were grown on toluene, extracted, electrophoretically separated, and analyzed by MALDI-TOF MS. Catabolic enzymes were identified and results substantiated using tandem MS. 相似文献
9.
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is widely used in clinical laboratories for routine identification of bacteria and yeasts. However, methodological difficulties are still apparent when applied to filamentous fungi. The liquid cultivation method recommended by Bruker Daltonics GmbH for identification of filamentous fungi by MALDI-TOF MS is labour intensive and time-consuming. In this study, growth of Aspergillus species on different (porous) surfaces was investigated with the aim to develop a more reliable, quicker and less laborious identification method using MALDI-TOF MS. Mycelial growth without sporulation mimicking liquid cultivation and reliable MALDI-TOF MS spectra were obtained when A. fumigatus strains were grown on and in between a polycarbonate membrane filter on Sabouraud dextrose agar. A database of in-house reference spectra was created by growing Aspergillus reference strains (mainly focusing on sections Fumigati and Flavi) under these selected conditions. A test set of 50 molecularly identified strains grown under different conditions was used to select the best growth condition for identification and to perform an initial validation of the in-house database. Based on these results, the cultivation method on top of a polycarbonate filter proved to be most successful for species identification. This method was therefore selected for the identification of two sets of clinical isolates that mainly consisted of Aspergilli (100 strains originating from Indonesia, 70 isolates from Qatar). The results showed that this cultivation method is reliable for identification of clinically relevant Aspergillus species, with 67% and 76% correct identification of strains from Indonesia and Qatar, respectively. In conclusion, cultivation of Aspergilli on top of a polycarbonate filter showed improved results compared to the liquid cultivation protocol recommended by Bruker in terms of percentage of correct identification, ease of MSP creation, time consumption, cost and labour intensity. This method can be reliably applied for identification of clinically important Aspergilli and has potential for identification of other filamentous fungi. 相似文献
11.
Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) is a rapidly evolving method used for the in situ visualization and localization of molecules such as drugs, lipids, peptides, and proteins in tissue sections. Therefore, molecules such as lipids, for which antibodies and other convenient detection reagents do not exist, can be detected, quantified, and correlated with histopathology and disease mechanisms. Furthermore, MALDI-IMS has the potential to enhance our understanding of disease pathogenesis through the use of “biochemical histopathology”. Herein, we review the underlying concepts, basic methods, and practical applications of MALDI-IMS, including post-processing steps such as data analysis and identification of molecules. The potential utility of MALDI-IMS as a companion diagnostic aid for lipid-related pathological states is discussed. 相似文献
12.
Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies'' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the future. 相似文献
13.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) was used to quantify the phosphopeptide produced by calcium/calmodulin-dependent protein kinase II (CaMK II). MALDI-TOF measurements were performed in a linear and positive ion mode with delayed extraction excited at various laser powers and at different sampling positions, i.e., different loci of laser illumination. We find that the ratio of the peak area of the substrate (S) to that of its monophosphorylated form (SP) for a given mixture is constant, independent of the laser powers and/or of the sample loci illuminated by the laser. We also find that the fraction of phosphorylation determined by MALDI-TOF, or fMALDI-TOF, is proportionally smaller than that determined by HPLC, or fHPLC; the ratio fMALDI-TOF/ fHPLCwas 0.797 ± 0.0229 (99% confidence limit, n= 7) for a 30-mer peptide substrate used in this study. A low mass gate, which turns off the detector temporarily, improved the ratio fMALDI-TOF/ fHPLCto 0.917 ± 0.0184 (99% confidence limit, n= 7). Our interpretation of this result is that the reduction of the phosphopeptide peak in the MALDI-TOF measurement is likely to be caused by a temporal loss of detector function rather than by a lower efficiency of ionization for the phosphopeptide compared with its parent species. In these measurements the experimental errors, up to the 50% phosphorylation state, were less than 5%. After an adjustment made based on the fMALDI-TOF/ fHPLCratio of 0.917, MALDI-TOF gave an accurate measurement for the kinetics of the CaMK II phosphorylation reaction. Since only a small volume of the reaction mixture, typically containing 3 to 50 pmol of substrate, is required for the MALDI-TOF measurement, this method can be adapted to a nonradioactive microscale assay for CaMK II and also for other protein kinases. 相似文献
14.
Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. 相似文献
15.
Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been used to identify bacteria based upon protein signatures. This research shows that while some different proteins are produced by vegetative bacteria when they are cultured in different growth media, positive identification with MALDI-TOF MS is still possible with the protocol established at the Pacific Northwest National Laboratory (K. H. Jarman, S. T. Cebula, A. J. Saenz, C. E. Petersen, N. B. Valentine, M. T. Kingsley, and K. L. Wahl, Anal. Chem. 72:1217-1223, 2000). A core set of small proteins remain constant under at least four different culture media conditions and blood agar plates, including minimal medium M9, rich media, tryptic soy broth (TSB) or Luria-Bertani (LB) broth, and blood agar plates, such that analysis of the intact cells by matrix-assisted laser desorption/ionization mass spectrometry allows for consistent identification. 相似文献
16.
Unique patterns of biomarkers were reproducibly characterized by matrix-assisted laser desorption ionization (MALDI)–mass spectrometry and were used to distinguish Bacillus species members from one another. Discrimination at the strain level was demonstrated for Bacillus cereus spores. Lipophilic biomarkers were invariant in Bacillus globigii spores produced in three different media and in B. globigii spores stored for more than 30 years. The sensitivity was less than 5,000 cells deposited for analysis. Protein biomarkers were also characterized by MALDI analysis by using spores treated briefly with corona plasma discharge. Protein biomarkers were readily desorbed following this treatment. The effect of corona plasma discharge on the spores was examined. 相似文献
17.
目的研究基质辅助激光解析电离飞行时间质谱(Matrix-Assisted Laser Desorption Ionization-Time of Flight MassSpectrometry,MALDI-TOF-MS)用于快速检测鉴定临床分离的酵母菌的可行性。方法应用Bruker MALDI-TOF-MS和VITEK 2-compact系统分别鉴定150株临床分离的酵母菌,结果不一致的菌株通过基因序列测定来鉴定。结果 MALDI-TOF-MS快速准确鉴定出了150株临床酵母菌,鉴定符合率在属水平上为100%,种水平上为94%。结论基于MALDI-TOF-MS鉴定方法具有很好的可重复性和准确性,并且其检测成本较低,实验准备时间很短,MALDI-TOF-MS可以用于临床分离的酵母菌的快速鉴定。 相似文献
18.
This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.Members of the genus Bacillus are rod-shaped bacteria that exhibit catalase activity and can be characterized as endospore-forming obligate or facultative aerobes. The genus Bacillus contains two important groups of bacteria named after B. subtilis and B. cereus. The best-characterized member of the former group is B. subtilis, a renowned model organism for genetic research. Other group members, like B. pumilis, B. licheniformis, B. atrophaeus, and B. amyloliquefaciens, exhibit a high degree of phenotypic similarity and are thus not easily distinguishable ( 15).The B. cereus group comprises a number of closely related bacteria, some of which interfere with human health. Bacteria classified as B. cereus are occasionally associated with food poisoning ( 16, 28), while B. thuringiensis is primarily an insect pathogen because of its ability to produce toxins that have been widely used for the biocontrol of insect pests ( 28, 30). A third member of the B. cereus group, B. anthracis, is the causative agent of anthrax and is highly relevant to human and animal health. Other members of the B. cereus group are B. mycoides, B. pseudomycoides, and B. weihenstephanensis ( 4, 15). B. anthracis is a possible agent in biological warfare and bioterrorism. Its applicability as a biological warfare agent was made apparent by an accidental release from a Soviet military facility in Sverdlovsk ( 1, 10). Also, the well-publicized mailing of B. anthracis spores in the United States, which caused 18 confirmed cases of cutaneous and inhalational anthrax and an additional 4 suspected cases of cutaneous anthrax ( 3, 22), demonstrated that B. anthracis may become a threat from terrorist groups ( 10).Rapid detection of B. anthracis may be challenging because of its great genetic similarity to other species of the B. cereus group ( 10) and the difficulties of phenotypic differentiation of B. cereus group members ( 15). There is some controversy in the literature regarding the taxonomy of the B. cereus group. Indeed, some authors state that B. anthracis, B. cereus, and B. thuringiensis are one species with various virulence plasmids for the toxin pXO1 and the capsule pXO2 of B. anthracis and the insecticidal toxin of B. thuringiensis ( 10, 19). Other authors do not support this opinion and suggest the presence of even more species within the group ( 21).Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) intact-cell mass spectrometry (ICMS) has been suggested as a rapid, objective, and reliable technique for bacterial identification ( 8, 13, 23, 25, 38). As a proteomic technique, ICMS of whole bacterial cells, or cell lysates, relies on the reproducible detection of microbial protein patterns and thus delivers information complementary to genotypic or phenotypic test methods. With the pattern-matching approach, microbial identification is achieved by comparing experimental mass spectra with a collection of mass spectra of known organisms. This requires the compilation of large databases of bacterial reference spectra but has the advantage that an extensive knowledge of biomarker identities is not required. Another advantage of the pattern-matching approach is that genus- and species-specific procedures or consumables are not required, i.e., the same methodology can in principle be applied to all kinds of microorganisms (multiplex advantage).It is thus believed that ICMS offers the possibility to systematically investigate the diversity of bacterial subproteomes, complementing existing methodologies of bacterial characterization. This potential and the need for a rapid, objective, and reliable microbial identification technique that does not rely on nucleic acid detection and the availability of an MS-compatible inactivation protocol for highly pathogenic biosafety level 3 microorganisms and bacterial endospores ( 26) prompted us to systematically study the MALDI-TOF MS profiles of Bacillus strains and to establish a database of bacterial mass spectra. In the present work, we describe strategies of spectral analysis that allow the identification and validation of group- and species-specific sets of biomarkers. Using unsupervised hierarchical cluster analysis (UHCA) and supervised artificial neural network (ANN) analysis, we also demonstrate how microbial spectra can be employed to establish an MS-based methodology for rapid, objective, and reliable identification of the target species, B. anthracis. 相似文献
19.
A methodology based on matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact bacterial cells was used for rapid discrimination of 24 bacterial species, and detailed analyses to identify Escherichia coli O157:H7 were carried out. Highly specific mass spectrometric profiles of pathogenic and nonpathogenic bacteria that are well-known major food contaminants were obtained, uploaded in a specific database, and made available on the Web. In order to standardize the analytical protocol, several experimental, sample preparation, and mass spectrometry parameters that can affect the reproducibility and accuracy of data were evaluated. Our results confirm the conclusion that this strategy is a powerful tool for rapid and accurate identification of bacterial species and that mass spectrometric methodologies could play an essential role in polyphasic approaches to the identification of pathogenic bacteria. 相似文献
20.
Currently, the genus Lactococcus is classified into six species: Lactococcus chungangensis, L. garvieae, L. lactis, L. piscium, L. plantarum, and L. raffinolactis. Among these six species, L. lactis is especially important because of its use in the manufacture of probiotic dairy products. L. lactis consists of three subspecies: L. lactis subsp. cremoris, L. lactis subsp. hordniae, and L. lactis subsp. lactis. However, these subspecies have not yet been reliably discriminated. To date, mainly phenotypic identification has been used, with a few genotypic identifications. We discriminated species or subspecies in the genus Lactococcus not only by proteomics identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) but also by phenotypic and genotypic identification. The proteomics identification using differences in the mass spectra of ribosomal proteins was nearly identical to that by genotypic identification (i.e., by analyses of 16S rRNA and recA gene sequences and amplified fragment length polymorphism). The three ribosomal subunits 30S/L31, 50S/L31, and 50S/L35 were the best markers for discriminating L. lactis subsp. cremoris from L. lactis subsp. lactis. Proteomics identification using MALDI-TOF MS was therefore a powerful method for discriminating and identifying these bacteria. In addition, this method was faster and more reliable than others that we examined.Lactococci are lactic acid bacteria (LAB) that are important contributors to the production of fermented dairy products, and some species produce antimicrobial compounds. Most species in the genus Lactococcus have been isolated from food-related sources and plants and are generally regarded as safe. Probiotic foods use these LAB, and there have been various studies of the relationship between these foods and the maintenance of human intestinal health ( 32). Lactococcus was first established as a genus distinct from the genus Streptococcus in 1985 ( 29).Currently, six species and three subspecies in the genus Lactococcus have been validated. Lactococcus plantarum has been isolated mainly from plants; L. garvieae has been isolated from fish, animals, and milk, and L. piscium has been isolated from salmon. Lactococcus lactis is most commonly found in raw milk, cheese, and other dairy products; L. raffinolactis has been found in raw milk and cheese, and L. chunagangensis has been isolated from wastewater. Among the six species, L. lactis is considered one of the most important in food production because it is used to manufacture fermented milk, butter, and cheese. Because of this importance, the whole genomes of three strains of L. lactis—L. lactis subsp. cremoris SK11 ( 10), L. lactis subsp. cremoris MG 1363 ( 37), and L. lactis subsp. lactis IL1403 ( 2)—have been sequenced.Since L. lactis was first described by Orla-Jensen in 1919 ( 21), there have been various classifications. To date, L. lactis has been classified into three subspecies: L. lactis subsp. cremoris, L. lactis subsp. hordniae, and L. lactis subsp. lactis. However, this classification was based on only a few phenotypic characteristics and is considered imperfect because of its inherent disadvantages of sensitivity to culture conditions or bacterial growth phase. Discriminating between L. lactis subsp. cremoris and L. lactis subsp. lactis is particularly difficult but is very important in industrial applications, because the activities of the two subspecies in cheese manufacture differ. In addition, when newly isolated bacterial strains are registered in public culture collections, these strains have to be identified and discriminated at the subspecies level. Normally, these two subspecies are identified on the basis of the following phenotypic features: (i) the ability to ferment maltose and ribose, (ii) growth in 4% NaCl (pH 9.2) at 40°C, (iii) the ability to produce ammonia from arginine, and (iv) the presence of glutamate decarboxylase activity ( 18- 20). However, determining the results of the phenotypic identification is difficult because they are sometimes ambiguous and time sensitive, as demonstrated by the sugar fermentation tests described below, which gave different results over time. In addition, the results of phenotypic identifications in previous reports were not identical each other ( 9, 28, 35).From an evolutionary viewpoint, it is reasonable to classify subspecies by using the divergence of housekeeping genes that are well preserved at the genus or species level. 16S rRNA gene sequencing is the most common technique currently used to identify species. At the subspecies level, however, 16S rRNA gene sequence identity is often very high, and these sequences therefore cannot be used for identification purposes ( 14, 24, 27, 36). Recently, for LAB, the partial sequences of the recA (recombinase A), pheS (phenylalanyl tRNA synthetase alpha subunit), and rpoA (DNA-directed RNA polymerase alpha chain) genes have been effectively used for species or subspecies identification ( 5, 7, 17), and the analysis of 16S rRNA gene sequences in combination with housekeeping gene sequences has been used to identify subspecies.In recent years, a number of important experiments have used matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for rapid bacterial identification, including clostridia ( 15), LAB ( 34), Listeria ( 1), mycobacteria ( 12), salmonellae ( 6), viridans group streptococci ( 8), and other nonfermenting bacteria ( 16). In these studies, MALDI-TOF MS spectra were obtained from intact cells without biomarker purification or chromatographic separation. MALDI-TOF MS is a good tool for the analysis of biopolymers because of its soft ionization, and it plays a central role in proteomic research. Because of their simplicity, speed, and accuracy, MS methods have been successfully applied to biomarker discovery and the characterization of various bacterial agents. Although DNA sequencing is the current standard for molecular characterization of bacteria, molecular methods cannot be easily applied for rapid classification and identification.Our aim was to examine whether a proteomic approach using MALDI-TOF MS was effective for rapid bacterial identification, especially of two of the subspecies of L. lactis. 相似文献
|