首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The 26S proteasome mediates ubiquitin-dependent proteolysis in eukaryotic cells. A number of studies including very recent ones have revealed that assembly of its 20S catalytic core particle is an ordered process that involves several conserved proteasome assembly chaperones (PACs). Two heterodimeric chaperones, PAC1-PAC2 and PAC3-PAC4, promote the assembly of rings composed of seven alpha subunits. Subsequently, beta subunits join to form half-proteasome precursor complexes containing all but one of the 14 subunits. These complexes lack the beta7 subunit but contain UMP1, another assembly chaperone, and in yeast, at least to some degree, the activator protein Blm10. Dimerization of two such complexes is triggered by incorporation of beta7, whose C-terminal extension reaches out into the other half to stabilize the newly formed 20S particle. The process is completed by the maturation of active sites and subsequent degradation of UMP1 and PAC1-PAC2.  相似文献   

2.
3.
The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome‐specific chaperones, i.e., proteasome‐assembling chaperons 1–4 (PAC1–4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90‐Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4–5 subunits. This will provide insights into human proteasome‐assembling chaperones as potential anticancer drug targets.  相似文献   

4.
The 20 S proteasome is an essential proteolytic particle, responsible for degrading short-lived and abnormal intracellular proteins. The 700-kDa assembly is comprised of 14 alpha-type and 14 beta-type subunits, which form a cylindrical architecture composed of four stacked heptameric rings (alpha7beta7beta7alpha7). The formation of the 20 S proteasome is a complex process that involves a cascade of folding, assembly, and processing events. To date, the understanding of the assembly pathway is incomplete due to the experimental challenges of capturing short-lived intermediates. In this study, we have applied a real-time mass spectrometry approach to capture transient species along the assembly pathway of the 20 S proteasome from Rhodococcus erythropolis. In the course of assembly, we observed formation of an early alpha/beta-heterodimer as well as an unprocessed half-proteasome particle. Formation of mature holoproteasomes occurred in concert with the disappearance of half-proteasomes. We also analyzed the beta-subunits before and during assembly and reveal that those with longer propeptides are incorporated into half- and full proteasomes more rapidly than those that are heavily truncated. To characterize the preholoproteasome, formed by docking of two unprocessed half-proteasomes and not observed during assembly of wild type subunits, we trapped this intermediate using a beta-subunit mutational variant. In summary, this study provides evidence for transient intermediates in the assembly pathway and reveals detailed insight into the cleavage sites of the propeptide.  相似文献   

5.
Murata S 《IUBMB life》2006,58(5-6):344-348
Protein degradation is essential for maintenance of cellular homeostasis. The majority of proteins are selectively degraded in eukaryotic cells by the ubiquitin-proteasome system. The 26S proteasome selects target proteins that are covalently modified with polyubiquitin chains. The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. The catalytic activities are carried out by the core 20S proteasome. The eukaryotic 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7. Recent studies have revealed the mechanism responsible for the assembly of such a complex structure. This article recounts the observations that disclosed the biogenesis of 20S proteasomes and discusses the difference in the mechanism of assembly between archael, yeast, and mammalian 20S proteasomes.  相似文献   

6.
Proteins targeted for degradation by the ubiquitin-proteasome system are degraded by the 26S proteasome. The core of this large protease is the 20S proteasome, a barrel-shaped structure made of a stack of four heptameric rings. Of the 14 different subunits that make up the yeast 20S proteasome, three have proteolytic active sites: Doa3/beta5, Pup1/beta2 and Pre3/beta1. Each of these subunits is synthesized with an N-terminal propeptide that is autocatalytically cleaved during particle assembly. We show here that the propeptides have both common and distinct functions in proteasome biogenesis. Unlike the Doa3 propeptide, which is crucial for proteasome assembly, the Pre3 and Pup1 propeptides are dispensable for cell viability and proteasome formation. However, mutants lacking these propeptide-encoding elements are defective for specific peptidase activities, are more sensitive to environmental stresses and have subtle defects in proteasome assembly. Unexpectedly, a critical function of the propeptide is the protection of the N-terminal catalytic threonine residue against Nalpha-acetylation. For all three propeptide-deleted subunits, activity of the affected catalytic center is fully restored when the Nat1-Ard1 Nalpha-acetyltransferase is mutated. In addition to delineating a novel function for proteasome propeptides, these data provide the first biochemical evidence for the postulated participation of the alpha-amino group in the proteasome catalytic mechanism.  相似文献   

7.
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation.  相似文献   

8.
Dissecting beta-ring assembly pathway of the mammalian 20S proteasome   总被引:2,自引:0,他引:2  
The 20S proteasome is the catalytic core of the 26S proteasome. It comprises four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). Recent studies indicated that proteasome-specific chaperones and beta-subunit appendages assist in the formation of alpha-rings and dimerization of half-proteasomes, but the process involved in the assembly of beta-rings is poorly understood. Here, we clarify the mechanism of beta-ring formation on alpha-rings by characterizing assembly intermediates accumulated in cells depleted of each beta-subunit. Starting from beta2, incorporation of beta-subunits occurs in an orderly manner dependent on the propeptides of beta2 and beta5, and the C-terminal tail of beta2. Unexpectedly, hUmp1, a chaperone functioning at the final assembly step, is incorporated as early as beta2 and is required for the structural integrity of early assembly intermediates. We propose a model in which beta-ring formation is assisted by both intramolecular and extrinsic chaperones, whose roles are partially different between yeast and mammals.  相似文献   

9.
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.  相似文献   

10.
The yeast (Saccharomyces cerevisiae) 26S proteasome consists of the 19S regulatory particle (19S RP) and 20S proteasome subunits. We detected comprehensively co‐ and post‐translational modifications of these subunits using proteomic techniques. First, using MS/MS, we investigated the N‐terminal modifications of three 19S RP subunits, Rpt1, Rpn13, and Rpn15, which had been unclear, and found that the N‐terminus of Rpt1 is not modified, whereas that of Rpn13 and Rpn15 is acetylated. Second, we identified a total of 33 Ser/Thr phosphorylation sites in 15 subunits of the proteasome. The data obtained by us and other groups reveal that the 26S proteasome contains at least 88 phospho‐amino acids including 63 pSer, 23 pThr, and 2 pTyr residues. Dephosphorylation treatment of the 19S RP with λ phosphatase resulted in a 30% decrease in ATPase activity, demonstrating that phosphorylation is involved in the regulation of ATPase activity in the proteasome. Third, we tried to detect glycosylated subunits of the 26S proteasome. However, we identified neither N‐ and O‐linked oligosaccharides nor O‐linked β‐N‐acetylglucosamine in the 19S RP and 20S proteasome subunits. To date, a total of 110 co‐ and post‐translational modifications, including Nα‐acetylation, Nα‐myristoylation, and phosphorylation, in the yeast 26S proteasome have been identified.  相似文献   

11.
Substrate access and processing by the 20S proteasome core particle   总被引:5,自引:0,他引:5  
Intracellular proteolysis is an essential process. In eukaryotes, most proteins in the cytosol and nucleus are degraded by the ubiquitin (Ub)-proteasome pathway. A major component within this system is the 26S proteasome, a 2.5MDa molecular machine, built from more than 31 different subunits. This complex is formed by a cylinder-shaped multimeric complex referred to as the proteolytic 20S proteasome (core particle, CP) capped at each end by another multimeric component called the 19S complex (regulatory particle, RP) or PA700. Structure, assembly and enzymatic mechanism have been elucidated only for the CP, whereas the organization of the RP is less well understood. The CP is composed of 28 subunits, which are arranged as an alpha7beta7beta7alpha7-complex in four stacked rings. The interior of the free core particle, which harbors the active sites, is inaccessible for folded and unfolded substrates and represents a latent state. This inhibition is relieved upon binding of the RP to the CP by formation of the 26S proteasome holoenzyme. This review summarizes the current knowledge of the structural features of 20S proteasomes.  相似文献   

12.
《Biophysical journal》2022,121(20):3975-3986
The 20S proteasome core particle (CP) is a molecular machine that is a key component of cellular protein degradation pathways. Like other molecular machines, it is not synthesized in an active form but rather as a set of subunits that assemble into a functional complex. The CP is conserved across all domains of life and is composed of 28 subunits, 14 α and 14 β, arranged in four stacked seven-member rings (α7β7β7α7). While details of CP assembly vary across species, the final step in the assembly process is universally conserved: two half proteasomes (HPs; α7β7) dimerize to form the CP. In the bacterium Rhodococcus erythropolis, experiments have shown that the formation of the HP is completed within minutes, while the dimerization process takes hours. The N-terminal propeptide of the β subunit, which is autocatalytically cleaved off after CP formation, plays a key role in regulating this separation of timescales. However, the detailed molecular mechanism of how the propeptide achieves this regulation is unclear. In this work, we used molecular dynamics simulations to characterize HP conformations and found that the HP exists in two states: one where the propeptide interacts with key residues in the HP dimerization interface and likely blocks dimerization, and one where this interface is free. Furthermore, we found that a propeptide mutant that dimerizes extremely slowly is essentially always in the nondimerizable state, while the wild-type rapidly transitions between the two. Based on these simulations, we designed a propeptide mutant that favored the dimerizable state in molecular dynamics simulations. In vitro assembly experiments confirmed that this mutant dimerizes significantly faster than wild-type. Our work thus provides unprecedented insight into how this critical step in CP assembly is regulated, with implications both for efforts to inhibit proteasome assembly and for the evolution of hierarchical assembly pathways.  相似文献   

13.
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.  相似文献   

14.
Bahadur RP  Janin J 《Proteins》2008,71(1):407-414
To evaluate the evolutionary constraints placed on viral proteins by the structure and assembly of the capsid, we calculate Shannon entropies in the aligned sequences of 45 polypeptide chains in 32 icosahedral viruses, and relate these entropies to the residue location in the three-dimensional structure of the capsids. Three categories of residues have entropies lower than the chain average implying that they are better conserved than average: residues that are buried within a subunit (the protein core), residues that contain atoms buried at an interface between subunits (the interface core), and residues that contribute to several such interfaces. The interface core is also conserved in homomeric proteins and in transient protein-protein complexes, which have only one interface whereas capsids have many. In capsids, the subunit interfaces implicate most of the polypeptide chain: on average, 66% of the capsid residues are at an interface, 34% at more than one, and 47% at the interface core. Nevertheless, we observe that the degree of residue conservation can vary widely between interfaces within a capsid and between regions within an interface. The interfaces and regions of interfaces that show a low sequence variability are likely to play major roles in the self-assembly of the capsid, with implications on its mechanism that we discuss taking adeno-associated virus as an example.  相似文献   

15.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

16.
The multi‐subunit Ca2+/calmodulin‐dependent protein kinase II (CaMKII) holoenzyme plays a critical role in animal learning and memory. The kinase domain of CaMKII is connected by a flexible linker to a C‐terminal hub domain that assembles into a 12‐ or 14‐subunit scaffold that displays the kinase domains around it. Studies on CaMKII suggest that the stoichiometry and dynamic assembly/disassembly of hub oligomers may be important for CaMKII regulation. Although CaMKII is a metazoan protein, genes encoding predicted CaMKII‐like hub domains, without associated kinase domains, are found in the genomes of some green plants and bacteria. We show that the hub domains encoded by three related green algae, Chlamydomonas reinhardtii, Volvox carteri f. nagarensis, and Gonium pectoral, assemble into 16‐, 18‐, and 20‐subunit oligomers, as assayed by native protein mass spectrometry. These are the largest known CaMKII hub domain assemblies. A crystal structure of the hub domain from C. reinhardtii reveals an 18‐subunit organization. We identified four intra‐subunit hydrogen bonds in the core of the fold that are present in the Chlamydomonas hub domain, but not in metazoan hubs. When six point mutations designed to recapitulate these hydrogen bonds were introduced into the human CaMKII‐α hub domain, the mutant protein formed assemblies with 14 and 16 subunits, instead of the normal 12‐ and 14‐subunit assemblies. Our results show that the stoichiometric balance of CaMKII hub assemblies can be shifted readily by small changes in sequence.  相似文献   

17.
Specific labelling with monoclonal antibodies reveals that in regulator-proteasome complexes the asymmetric 19S regulator (PA700) binds to one or both terminal alpha-disks of the cylinder-shaped 20S core proteasome in such a way that its reclining front part is positioned in the vicinity of proteasome subunit alpha6. The protruding rear part of the regulator appears to be situated distal to the sites occupied by the subunits alpha2 and alpha3, respectively. When viewed from beta1/beta1' to beta4/beta4' along the polar 2-fold axis of the 20S proteasome core, the rear part of each 19S regulator cap appears to protrude clockwise. Thus, a defined alignment of the 19S regulator with respect to the single polar 2-fold rotational axis of the 20S core proteasome is obtained.  相似文献   

18.
The 20S proteasome is a catalytic core of the 26S proteasome, a central enzyme in the degradation of ubiquitin-conjugated proteins. It is composed of 14 distinct gene products that form four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). It is reported that the biogenesis of mammalian 20S proteasomes is assisted by proteasome-specific chaperones, named PAC1, PAC2, and hUmp1, but the details are still unknown. Here, we report the identification of a chaperone, designated PAC3, as a component of alpha rings. Although it can intrinsically bind directly to both alpha and beta subunits, PAC3 dissociates before the formation of half-proteasomes, a process coupled with the recruitment of beta subunits and hUmp1. Knockdown of PAC3 impaired alpha ring formation. Further, PAC1/2/3 triple knockdown resulted in the accumulation of disorganized half-proteasomes that are incompetent for dimerization. Our results describe a cooperative system of multiple chaperones involved in the correct assembly of mammalian 20S proteasomes.  相似文献   

19.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

20.
Mammalian proteasomes are macromolecular complexes formed of a catalytic 20S core associated to two regulatory complexes. The 20S core complex consists of four stacked rings of seven alpha or beta subunits. Three beta subunits contain a catalytic site and can be replaced by three interferon gamma-inducible counterparts to form the immunoproteasome. Cells may constitutively possess a mixture of both 20S proteasome types leading to a heterogeneous proteasome population. Purified rat 20S proteasome has been separated in several chromatographic fractions indicating an even higher degree of complexity in 20S proteasome subunit composition. This complexity may arise from the presence of subunit isoforms, as previously detected in purified human erythrocyte 20S proteasome. In this study, we have used a quantitative proteomic approach based on two-dimensional gel electrophoresis and isotope-coded affinity tag (ICAT) labeling to quantify the variations in subunit composition, including subunit isoforms, of 20S proteasomes purified from different cells. The protocol has been adapted to the analysis of low quantities of 20S proteasome complexes. The strategy has then been validated using standard proteins and has been applied to the comparison of 20S proteasomes from erythrocytes and U937 cancer cells. The results obtained show that this approach represents a valuable tool for the study of 20S proteasome heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号