首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

Rationale

Neuromuscular electrical stimulation (NMES) of the lower limbs is an emerging training strategy in patients with COPD. The efficacy of this technique is related to the intensity of the stimulation that is applied during the training sessions. However, little is known about tolerance to stimulation current intensity and physiological factors that could determine it. Our goal was to find potential physiological predictors of the tolerance to increasing NMES stimulation intensity in patients with mild to severe COPD.

Methods

20 patients with COPD (FEV1 = 54±14% pred.) completed 2 supervised NMES sessions followed by 5 self-directed sessions at home and one final supervised session. NMES was applied simultaneously to both quadriceps for 45 minutes, at a stimulation frequency of 50 Hz. Spirometry, body composition, muscle function and aerobic capacity were assessed at baseline. Cardiorespiratory responses, leg discomfort, muscle fatigue and markers of systemic inflammation were assessed during or after the last NMES session. Tolerance to NMES was quantified as the increase in current intensity from the initial to the final NMES session (ΔInt).

Results

Mean ΔInt was 12±10 mA. FEV1, fat-free-mass, quadriceps strength, aerobic capacity and leg discomfort during the last NMES session positively correlated with ΔInt (r = 0.42 to 0.64, all p≤0.06) while post/pre NMES IL-6 ratio negatively correlated with ΔInt (r = −0.57, p = 0.001). FEV1, leg discomfort during last NMES session and post/pre IL-6 ratio to NMES were independent factors of variance in ΔInt (r2 = 0.72, p = 0.001).

Conclusion

Lower tolerance to NMES was associated with increasing airflow obstruction, low tolerance to leg discomfort during NMES and the magnitude of the IL-6 response after NMES.

Trial Registration

ClinicalTrials.gov NCT00809120  相似文献   

2.

Purpose

This study aimed to compare the trapezius muscle blood volume and oxygenation in the stimulation region and in a distant region in the same muscle during acupuncture stimulation (AS). We hypothesized that AS provokes a localized increase in muscle blood volume and oxygenation in the stimulation region.

Methods

Two sets of near-infrared spectrometer (NIRS) probes, with 40-mm light-source detector spacing, were placed on the right trapezius muscle, with a 50-mm distance between the probes. Changes in muscle oxygenation (oxy-Hb) and blood volume (t-Hb) in stimulation and distant regions (50 mm away from the stimulation point) were measured using NIRS. Nine healthy acupuncture-experienced subjects were chosen as the experimental (AS) group, and 10 healthy acupuncture-experienced subjects were chosen for the control (no AS) group. Measurements began with a 3-min rest period, followed by "Jakutaku" (AS) for 2 min, and recovery after stimulation.

Results

There was a significant increase in oxy-Hb (60.7 μM at maximum) and t-Hb (48.1 μM at maximum) in the stimulation region compared to the distant region. In the stimulation region, a significant increase in oxy-Hb and t-Hb compared with the pre-stimulation level was first noted at 58.5 s and 13.5 s, respectively, after the onset of stimulation.

Conclusion

In conclusion, oxygenation and blood volume increased, indicating elevated blood flow to the small vessels, not in the distant region used in this study, but in the stimulation region of the trapezius muscle during and after a 2-min AS.
  相似文献   

3.
The aim of the present study was to investigate the neurophysiological triggers underlying muscle relaxation from the contracted state, and to examine the mechanisms involved in this process and their subsequent modification by neuromuscular electrical stimulation (NMES). Single-pulse transcranial magnetic stimulation (TMS) was used to produce motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in 23 healthy participants, wherein motor cortex excitability was examined at the onset of voluntary muscle relaxation following a period of voluntary tonic muscle contraction. In addition, the effects of afferent input on motor cortex excitability, as produced by NMES during muscle contraction, were examined. In particular, two NMES intensities were used for analysis: 1.2 times the sensory threshold and 1.2 times the motor threshold (MT). Participants were directed to execute constant wrist extensions and to release muscle contraction in response to an auditory “GO” signal. MEPs were recorded from the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles, and TMS was applied at three different time intervals (30, 60, and 90?ms) after the “GO” signal. Motor cortex excitability was greater during voluntary ECR and FCR relaxation using high-intensity NMES, and relaxation time was decreased. Each parameter differed significantly between 30 and 60?ms. Moreover, in both muscles, SICI was larger in the presence than in the absence of NMES. Therefore, the present findings suggest that terminating a muscle contraction triggers transient neurophysiological mechanisms that facilitate the NMES-induced modulation of cortical motor excitability in the period prior to muscle relaxation. High-intensity NMES might facilitate motor cortical excitability as a function of increased inhibitory intracortical activity, and therefore serve as a transient trigger for the relaxation of prime mover muscles in a therapeutic context.  相似文献   

4.

Introduction

Women with fibromyalgia (FM) have symptoms of increased muscular fatigue and reduced exercise tolerance, which may be associated with alterations in muscle microcirculation and oxygen metabolism. This study used near-infrared diffuse optical spectroscopies to noninvasively evaluate muscle blood flow, blood oxygenation and oxygen metabolism during leg fatiguing exercise and during arm arterial cuff occlusion in post-menopausal women with and without FM.

Methods

Fourteen women with FM and twenty-three well-matched healthy controls participated in this study. For the fatiguing exercise protocol, the subject was instructed to perform 6 sets of 12 isometric contractions of knee extensor muscles with intensity steadily increasing from 20 to 70% maximal voluntary isometric contraction (MVIC). For the cuff occlusion protocol, forearm arterial blood flow was occluded via a tourniquet on the upper arm for 3 minutes. Leg or arm muscle hemodynamics, including relative blood flow (rBF), oxy- and deoxy-hemoglobin concentration ([HbO2] and [Hb]), total hemoglobin concentration (THC) and blood oxygen saturation (StO2), were continuously monitored throughout protocols using a custom-built hybrid diffuse optical instrument that combined a commercial near-infrared oximeter for tissue oxygenation measurements and a custom-designed diffuse correlation spectroscopy (DCS) flowmeter for tissue blood flow measurements. Relative oxygen extraction fraction (rOEF) and oxygen consumption rate (rVO2) were calculated from the measured blood flow and oxygenation data. Post-manipulation (fatiguing exercise or cuff occlusion) recovery in muscle hemodynamics was characterized by the recovery half-time, a time interval from the end of manipulation to the time that tissue hemodynamics reached a half-maximal value.

Results

Subjects with FM had similar hemodynamic and metabolic response/recovery patterns as healthy controls during exercise and during arterial occlusion. However, tissue rOEF during exercise in subjects with FM was significantly lower than in healthy controls, and the half-times of oxygenation recovery (Δ[HbO2] and Δ[Hb]) were significantly longer following fatiguing exercise and cuff occlusion.

Conclusions

Our results suggest an alteration of muscle oxygen utilization in the FM population. This study demonstrates the potential of using combined diffuse optical spectroscopies (i.e., NIRS/DCS) to comprehensively evaluate tissue oxygen and flow kinetics in skeletal muscle.  相似文献   

5.
Perfusion and oxygenation are critical parameters of muscle metabolism in health and disease. They have been both the target of many studies, in particular using near‐infrared spectroscopy (NIRS). However, difficulties with quantifying NIRS signals have limited a wide dissemination of the method to the clinics. Our aim was to investigate whether clinical multispectral optoacoustic tomography (MSOT) could enable the label‐free imaging of muscle perfusion and oxygenation under clinically relevant challenges: the arterial and venous occlusion. We employed a hybrid clinical MSOT/ultrasound system equipped with a hand‐held scanning probe to visualize hemodynamic and oxygenation changes in skeletal muscle under arterial and venous occlusions. Four (N = 4) healthy volunteers were scanned over the forearm for both 3‐minute occlusion challenges. MSOT‐recorded pathophysiologically expected results during tests of disturbed blood flow with high resolution and without the need for contrast agents. During arterial occlusion, MSOT‐extracted Hb‐values showed an increase, while HbO2‐ and total blood volume (TBV)‐values remained roughly steady, followed by a discrete increase during the hyperemic period after cuff deflation. During venous occlusion, results showed a clear increase in intramuscular HbO2, Hb and TBV within the segmented muscle area. MSOT was found to be capable of label‐free non‐invasive imaging of muscle hemodynamics and oxygenation under arterial and venous occlusion. We introduce herein MSOT as a novel modality for the assessment of vascular disorders characterized by disturbed blood flow, such as acute limb ischemia and venous thrombosis.  相似文献   

6.
To test the hypothesis that, during exercise, substantial heterogeneity of muscle hemoglobin and myoglobin deoxygenation [deoxy(Hb + Mb)] dynamics exists and to determine whether such heterogeneity is associated with the speed of pulmonary O(2) uptake (pVo(2)) kinetics, we adapted multi-optical fibers near-infrared spectroscopy (NIRS) to characterize the spatial distribution of muscle deoxygenation kinetics at exercise onset. Seven subjects performed cycle exercise transitions from unloaded to moderate [GET) work rates and the relative changes in deoxy(Hb + Mb), at 10 sites in the quadriceps, were sampled by NIRS. At exercise onset, the time delays in muscle deoxy(Hb + Mb) were spatially inhomogeneous [intersite coefficient of variation (CV), 3~56% for GET]. The primary component kinetics (time constant) of muscle deoxy(Hb + Mb) reflecting increased O(2) extraction were also spatially inhomogeneous (intersite CV, 6~48% for GET) and faster (P < 0.05) than those of phase 2 pVo(2). However, the degree of dynamic intersite heterogeneity in muscle deoxygenation did not correlate significantly with phase 2 pVo(2) kinetics. In conclusion, the dynamics of quadriceps microvascular oxygenation demonstrates substantial spatial heterogeneity that must arise from disparities in the relative kinetics of Vo(2) and O(2) delivery increase across the regions sampled.  相似文献   

7.
BACKGROUND: This study examined muscle deoxygenation trends before and after a 7-day taper using non-invasive near infrared spectroscopy (NIRS). METHODS: Eleven cyclists performed an incremental cycle ergometer test to determine maximal oxygen consumption (VO2max = 4.68 +/- 0.57 L.min-1) prior to the study, and then completed two or three high intensity (85-90% VO2max) taper protocols after being randomly assigned to a taper group: T30 (n = 5), T50 (n = 5), or T80 (n = 5) [30%, 50%, 80% reduction in training volume, respectively]. Physiological measurements were recorded during a simulated 20 km time trials (20TT) performed on a set of wind-loaded rollers. RESULTS AND DISCUSSION: The results showed that the physiological variables of oxygen consumption (VO2), carbon dioxide (VCO2) and heart rate (HR) were not significantly different after tapering, except for a decreased ventilatory equivalent for oxygen (VE/VO2) in T50 (p 相似文献   

8.
This study quantified the inter- and intra-test reliability of telemetric surface electromyography (EMG) and near infrared spectroscopy (NIRS) during resistance exercise. Twelve well-trained young men performed high-intensity back squat exercise (12 sets at 70–90% 1-repetition maximum) on two occasions, during which EMG and NIRS continuously monitored muscle activation and oxygenation of the thigh muscles. Intra-test reliability for EMG and NIRS variables was generally higher than inter-test reliability. EMG median frequency variables were generally more reliable than amplitude-based variables. The reliability of EMG measures was not related to the intensity or number of repetitions performed during the set. No notable differences were evident in the reliability of EMG between different agonist muscles. NIRS-derived measures of oxyhaemoglobin, deoxyhaemoglobin and tissue saturation index were generally more reliable during single-repetition sets than multiple-repetition sets at the same intensity. Tissue saturation index was the most reliable NIRS variable. Although the reliability of the EMG and NIRS measures varied across the exercise protocol, the precise causes of this variability are not yet understood. However, it is likely that biological variation during multi-joint isotonic resistance exercise may account for some of the variation in the observed results.  相似文献   

9.
Near-infrared spectrometry (NIRS) is a well-known method used to measure in vivo tissue oxygenation and hemodynamics. This method is used to derive relative measures of hemoglobin (Hb) + myoglobin (Mb) oxygenation and total Hb (tHb) accumulation from measurements of optical attenuation at discrete wavelengths. We present the design and validation of a new NIRS oxygenation analyzer for the measurement of muscle oxygenation kinetics. This design optimizes optical sensitivity and detector wavelength flexibility while minimizing component and construction costs. Using in vitro validations, we demonstrate 1) general optical linearity, 2) system stability, and 3) measurement accuracy for isolated Hb. Using in vivo validations, we demonstrate 1) expected oxygenation changes during ischemia and reactive hyperemia, 2) expected oxygenation changes during muscle exercise, 3) a close correlation between changes in oxyhemoglobin and oxymyoglobin and changes in deoxyhemoglobin and deoxymyoglobin and limb volume by venous occlusion plethysmography, and 4) a minimal contribution from movement artifact on the detected signals. We also demonstrate the ability of this system to detect abnormal patterns of tissue oxygenation in a well-characterized patient with a deficiency of skeletal muscle coenzyme Q(10). We conclude that this is a valid system design for the precise, accurate, and sensitive detection of changes in bulk skeletal muscle oxygenation, can be constructed economically, and can be used diagnostically in patients with disorders of skeletal muscle energy metabolism.  相似文献   

10.
Near-infrared spectroscopy (NIRS) could allow insights into controversial issues related to blood lactate concentration ([La](b)) increases at submaximal workloads (). We combined, on five well-trained subjects [mountain climbers; peak O(2) consumption (VO(2peak)), 51.0 +/- 4.2 (SD) ml. kg(-1). min(-1)] performing incremental exercise on a cycle ergometer (30 W added every 4 min up to voluntary exhaustion), measurements of pulmonary gas exchange and earlobe [La](b) with determinations of concentration changes of oxygenated Hb (Delta[O(2)Hb]) and deoxygenated Hb (Delta[HHb]) in the vastus lateralis muscle, by continuous-wave NIRS. A "point of inflection" of [La](b) vs. was arbitrarily identified at the lowest [La](b) value which was >0.5 mM lower than that obtained at the following. Total Hb volume (Delta[O(2)Hb + HHb]) in the muscle region of interest increased as a function of up to 60-65% of VO(2 peak), after which it remained unchanged. The oxygenation index (Delta[O(2)Hb - HHb]) showed an accelerated decrease from 60- 65% of VO(2 peak). In the presence of a constant total Hb volume, the observed Delta[O(2)Hb - HHb] decrease indicates muscle deoxygenation (i.e., mainly capillary-venular Hb desaturation). The onset of muscle deoxygenation was significantly correlated (r(2) = 0.95; P < 0.01) with the point of inflection of [La](b) vs., i.e., with the onset of blood lactate accumulation. Previous studies showed relatively constant femoral venous PO(2) levels at higher than approximately 60% of maximal O(2) consumption. Thus muscle deoxygenation observed in the present study from 60-65% of VO(2 peak) could be attributed to capillary-venular Hb desaturation in the presence of relatively constant capillary-venular PO(2) levels, as a consequence of a rightward shift of the O(2)Hb dissociation curve determined by the onset of lactic acidosis.  相似文献   

11.
Neuromuscular electrical stimulation (NMES) can be delivered over a nerve trunk or muscle belly and both can generate contractions through peripheral and central pathways. Generating contractions through peripheral pathways is associated with a nonphysiological motor unit recruitment order, which may limit the efficacy of NMES rehabilitation. Presently, we compared recruitment through peripheral and central pathways for contractions of the knee extensors evoked by NMES applied over the femoral nerve vs. the quadriceps muscle. NMES was delivered to evoke 10 and 20% of maximum voluntary isometric contraction torque 2-3 s into the NMES (time(1)) in two patterns: 1) constant frequency (15 Hz for 8 s); and 2) step frequency (15-100-15 Hz and 25-100-25 Hz for 3-2-3 s, respectively). Torque and electromyographic activity recorded from vastus lateralis and medialis were quantified at the beginning (time(1)) and end (time(2); 6-7 s into the NMES) of each pattern. M-waves (peripheral pathway), H-reflexes, and asynchronous activity (central pathways) during NMES were quantified. Torque did not differ regardless of NMES location, pattern, or time. For both muscles, M-waves were ~7-10 times smaller and H-reflexes ~8-9 times larger during NMES over the nerve compared with over the muscle. However, unlike muscles studied previously, neither torque nor activity through central pathways were augmented following 100 Hz NMES, nor was any asynchronous activity evoked during NMES at either location. The coefficient of variation was also quantified at time(2) to determine the consistency of each dependent measure between three consecutive contractions. Torque, M-waves, and H-reflexes were most variable during NMES over the nerve. In summary, NMES over the nerve produced contractions with the greatest recruitment through central pathways; however, considering some of the limitations of NMES over the femoral nerve, it may be considered a good complement to, as opposed to a replacement for, NMES over the quadriceps muscle for maintaining muscle quality and reducing contraction fatigue during NMES rehabilitation.  相似文献   

12.
This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34±0.14 to 5.50±0.14m.s-1) but not the CON group (pre = 5.37±0.27 to 5.39±0.30m.s-1) significant changes were seen in the 30-15IFT performance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (−7.59±0.91 to −12.16±2.70%); ΔHHb+HMb (35.68±6.67 to 69.44±26.48μM.cm); and ΔHbO2+ MbO2 (−74.29±13.82 to −109.36±22.61μM.cm). No significant differences were seen in ΔtHb (−45.81±15.23 to −42.93±16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes.  相似文献   

13.
While muscle contraction in voluntary efforts has been widely investigated, little is known about contraction during neuromuscular electrical stimulation (NMES). The aim of this study was to quantify in vivo muscle architecture of agonist and antagonist muscles at the ankle joint during NMES. Muscle fascicle lengths and pennation angles of the tibialis anterior (TA) and lateral gastrocnemius muscles were assessed via ultrasonography in 8 healthy young males. Measures were obtained during maximal NMES and torque-matched voluntary dorsiflexion contractions. In the TA, NMES induced a shorter fascicle length (67.2 ± 8.1 mm vs 74.6 ± 11.4 mm; p = 0.04) and a greater pennation angle (11.0 ± 2.4° vs 9.3 ± 2.5°; p = 0.03) compared with voluntary torque-matched dorsiflexion contractions. Architectural responses in the antagonist lateral gastrocnemius muscle did not significantly differ from rest or between voluntary and electrically induced contractions (p > 0.05). Contraction of the antagonist muscle was not a contributing factor to a greater fascicle shortening and increased pennation angle in the TA during NMES. TA architectural response during NMES likely arose from the contribution of muscle synergists during voluntary contractions coupled with a potentially localized contractile activity under the stimulation electrodes during NMES induced contractions.  相似文献   

14.
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. We simultaneously measured tissue oxygenation with NIR spectroscopy and blood flow with Doppler ultrasound in skeletal muscle of conscious humans (n = 13) and anesthetized rats (n = 9). In resting forearm of humans, reflex activation of sympathetic nerves with the use of lower body negative pressure produced graded decreases in tissue oxygenation and blood flow that were highly correlated (r = 0.80, P < 0.0001). Similarly, in resting hindlimb of rats, electrical stimulation of sympathetic nerves produced graded decreases in tissue oxygenation and blood flow velocity that were highly correlated (r = 0.93, P < 0.0001). During rhythmic muscle contraction, the decreases in tissue oxygenation and blood flow evoked by sympathetic activation were significantly attenuated (P < 0.05 vs. rest) but remained highly correlated in both humans (r = 0.80, P < 0.006) and rats (r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.  相似文献   

15.
Fibromyalgia (FM) is a complex syndrome characterized by chronic widespread pain and a heightened response to pressure. Most medical researches pointed out that FM patients with endothelial dysfunction and arterial stiffness. A continuous‐wave near‐infrared spectroscopy (NIRS) system is used in present study to measure the hemodynamic changes elicited by breath‐holding task in patients with FM. Each patient completed a questionnaire survey including demographics, characteristics of body pain, associated symptoms, headache profiles and Hospital Anxiety and Depression Scale. A total of 27 FM patients and 26 health controls were enrolled. In comparison with healthy controls, patients with FM showed lower maximal and averaged change of oxyhemoglobin concentration in both the left (1.634 ±0.890 and 0.810 ±0.525 μM) and the right (1.576 ±0.897 and 0.811 ±0.601 μM) prefrontal cortex than healthy controls (P < .05 for both sides) during the breath‐holding task. In conclusion, FM is associated with altered cerebrovascular reactivity measured by NIRS and breath‐holding task, which may reflect endothelial dysfunction or arterial stiffness. Oxygenated hemoglobin concentration changes of healthy controls and FM patients.   相似文献   

16.
Near-infrared spectroscopy (NIRS) is a well-known method used to measure muscle oxygenation and hemodynamics in vivo. The application of arterial occlusions allows for the assessment of muscle oxygen consumption (mVo(2)) using NIRS. The aim of this study was to measure skeletal muscle mitochondrial capacity using blood volume-corrected NIRS signals that represent oxygenated hemoglobin/myoglobin (O(2)Hb) and deoxygenated hemoglobin/myoglobin (HHb). We also assessed the reliability and reproducibility of NIRS measurements of resting oxygen consumption and mitochondrial capacity. Twenty-four subjects, including four with chronic spinal cord injury, were tested using either the vastus lateralis or gastrocnemius muscles. Ten healthy, able-bodied subjects were tested on two occasions within a period of 7 days to assess the reliability and reproducibility. NIRS signals were corrected for blood volume changes using three different methods. Resting oxygen consumption had a mean coefficient of variation (CV) of 2.4% (range 1-32%). The recovery of oxygen consumption (mVo(2)) after electrical stimulation at 4 Hz was fit to an exponential curve, which represents mitochondrial capacity. The time constant for the recovery of mVo(2) was reproducible with a mean CV of 10% (range 1-22%) only when correcting for blood volume changes. We also examined the effects of adipose tissue thickness on measurements of mVo(2). We found the mVo(2) measurements using absolute units to be influenced by adipose tissue thickness (ATT), and this relationship was removed when an ischemic calibration was performed, supporting its use to compare mVo(2) between individuals of varying ATT. In conclusion, in vivo oxidative capacity can be assessed using blood volume-corrected NIRS signals with a high degree of reliability and reproducibility.  相似文献   

17.
This study examined the effects of different types of neuromuscular electrical stimulation (NMES) programs on vertical jump performance. Twenty seven healthy trained male students in sports-sciences were recruited and randomized into three groups. The control group (C group, n = 8) did not perform NMES training. Two other groups underwent 3 training sessions a week over 5 weeks on the quadriceps femoris muscle [F group (n = 9): stimulation with an 80 Hz current for 15 min for improving muscle strength; E group (n = 10): stimulation with a 25 Hz current for 60 min for improving muscle endurance]. The height of the vertical jump was measured before NMES training (test 1), one week (test 2) and five weeks (test 3) after the end of the programs. The results showed that the height of the vertical jump significantly increased in both the F and E groups between tests 1 and 2 (5 cm and 3 cm respectively). Results of test 3 showed that both groups preserved their gains. A NMES training program destined to improve muscle endurance does not interfere on vertical jump performance. It can even durably enhance it in the same way as a NMES training program destined to improve muscle strength. Thus, to improve muscle endurance without deteriorating muscle power, sportsmen can use electrical stimulation.  相似文献   

18.

Background

Muscle passive contraction of lower limb by neuromuscular electrostimulation (NMES) is frequently used in chronic heart failure (CHF) patients but no data are available concerning its action on sympathetic activity. However, Transcutaneous Electrical Nerve Stimulation (TENS) is able to improve baroreflex in CHF. The primary aim of the present study was to investigate the acute effect of TENS and NMES compared to Sham stimulation on sympathetic overactivity as assessed by Muscle Sympathetic Nerve Activity (MSNA).

Methods

We performed a serie of two parallel, randomized, double blinded and sham controlled protocols in twenty-two CHF patients in New York Heart Association (NYHA) Class III. Half of them performed stimulation by TENS, and the others tested NMES.

Results

Compare to Sham stimulation, both TENS and NMES are able to reduce MSNA (63.5 ± 3.5 vs 69.7 ± 3.1 bursts / min, p < 0.01 after TENS and 51.6 ± 3.3 vs 56.7 ± 3.3 bursts / min, p < 0, 01 after NMES). No variation of blood pressure, heart rate or respiratory parameters was observed after stimulation.

Conclusion

The results suggest that sensory stimulation of lower limbs by electrical device, either TENS or NMES, could inhibit sympathetic outflow directed to legs in CHF patients. These properties could benefits CHF patients and pave the way for a new non-pharmacological approach of CHF.  相似文献   

19.
To determine the external force that induces maximal deoxygenation of brachioradialis muscle 32 trained male subjects maintained isometric contractions using the elbow flexor muscles up to the limit time (isotonic part of the isometric contraction, IIC) and beyond that time for 120 s (anisotonic part of the isometric contraction). During IIC each subject maintained relative forces of either 25% and 70% maximal voluntary contraction (MVC), 50% and 100% MVC, or 40% and 60% MVC. Muscle oxygenation was assessed using a near infrared spectroscope, and expressed as a percentage of the reference value (ΔO2rest) which was the difference between the minimal oxygenation obtained after 6 min of ischaemia at rest and the maximal reoxygenation following the release of the tourniquet. During IIC at 25% MVC, muscle oxygenation decreased to 17 (SEM 3)% ΔO2rest, then it levelled off [25 (SEM 1)% ΔO2rest]. After the point at which target force could not be maintained, reoxygenation was very weak. During IIC at 40%, 50%, 60%, and 70% MVC, the lowest muscle oxygenation values were obtained after 15–20 s of contraction and corresponded to −18 (SEM 6), −59 (SEM 12) −31 (SEM 6), and −29 (SEM 6)% ΔO2rest, respectively. For the contraction at 100% MVC, the lowest oxygenation [−19 (SEM 9)% ΔO2rest] was obtained while force was decreasing (69% MVC). During the anisotonic part of the isometric contractions, the greatest reoxygenation rate was obtained after 50% MVC IIC (P < 0.001). Our results showed that during isometric elbow flexions between 25% and 100% MVC, there was no linear relationship between external force and muscle oxygenation, and that the maximal deoxygenation of the brachioradialis muscle was obtained at 50% MVC. Accepted: 16 February 1998  相似文献   

20.
This study attempts to clarify whether intensity of exercise influences functional sympatholysis during mild rhythmic handgrip exercise (RHG). We measured muscle oxygenation in both exercising and non-exercising muscle in the same arm in 11 subjects using near infrared spectroscopy (NIRS), heart rate, and blood pressure. We used the total labile signal to assess the relative muscle oxygenation by occlusion for 6 min. Subjects performed RHG (20 times/min) for 6 min at 10%, 20%, and 30% of maximal voluntary contraction (MVC) at random. We used a non-hypotensive lower body negative pressure (LBNP) of 220 mmHg for 2 min to elicit reproducible enhancement in muscle sympathetic nerve activity (MSNA) at rest and during RHG. LBNP caused decreases of 16.4% and 17.7% of the level of muscle oxygenation at rest (pre) in exercising (forearm) and non-exercising (upper arm) muscle respectively. Muscle oxygenation in non-exercising muscle with the application of LBNP during RHG did not change significantly at each intensity. In contrast, the decrease in muscle oxygenation in exercising muscle attenuated progressively as exercise intensity increased (10% MVC 8.8+/-2.8%, 20% MVC 7.1+/-2.0%, 30% MVC 4.6+/-3.0%), when LBNP was applied during RHG. The attenuation of the decrease in muscle oxygenation due to LBNP during RHG at 10%, 20%, and 30% was significantly different from that at rest (p<0.01). These findings indicate that functional sympatholysis during mild RHG might be attributed to exercise intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号