首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial RING fingers (ARFs) are created by transplanting active sites of RING fingers onto cross‐brace structures. Human hydroxymethylglutaryl‐coenzyme A reductase degradation protein 1 (HRD1) is involved in the degradation of the endoplasmic reticulum (ER) proteins. HRD1 possesses the RING finger domain (HRD1_RING) that functions as a ubiquitin‐ligating (E3) enzyme. Herein, we determined the solution structure of HRD1_RING using nuclear magnetic resonance (NMR). Moreover, using a metallochromic indicator, we determined the stoichiometry of zinc ions spectrophotometrically and found that HRD1_RING binds to two zinc atoms. The Simple Modular Architecture Research Tool database predicted the structure of HRD1_RING as a typical RING finger. However, it was found that the actual structure of HRD1_RING adopts an atypical RING‐H2 type RING fold. This structural analysis unveiled the position and range of the active site of HRD1_RING that contribute to its specific ubiquitin‐conjugating enzyme (E2)‐binding capability.  相似文献   

2.
    
RNF144A is involved in protein ubiquitination and functions as an ubiquitin‐protein ligase (E3) via its RING finger domain (RNF144A RING). RNF144A is associated with degradation of heat‐shock protein family A member 2 (HSPA2), which leads to the suppression of breast cancer cell proliferation. In this study, the solution structure of RNF144A RING was determined using nuclear magnetic resonance. Moreover, using a metallochromic indicator, we spectrophotometrically determined the stoichiometry of zinc ions and elucidated that RNF144A RING binds two zinc atoms. This structural analysis provided the position and range of the active site of RNF144A RING at the atomic level, which contributes to the creation of artificial RING fingers having the specific ubiquitin‐conjugating enzyme (E2)‐binding capability.  相似文献   

3.
4.
    
Cross‐brace structural motifs are required as a scaffold to design artificial RING fingers (ARFs) that function as ubiquitin ligase (E3) in ubiquitination and have specific ubiquitin‐conjugating enzyme (E2)‐binding capabilities. The Simple Modular Architecture Research Tool database predicted the amino acid sequence 131–190 (KIAA1045ZF) of the human KIAA1045 protein as an unidentified structural region. Herein, the stoichiometry of zinc ions estimated spectrophotometrically by the metallochromic indicator revealed that the KIAA1045ZF motif binds to two zinc atoms. The structure of the KIAA1045ZF motif bound to the zinc atoms was elucidated at the atomic level by nuclear magnetic resonance. The actual structure of the KIAA1045ZF motif adopts a C4HC3‐type PHD fold belonging to the cross‐brace structural family. Therefore, the utilization of the KIAA1045ZF motif as a scaffold may lead to the creation of a novel ARF.  相似文献   

5.
6.
    
Protein ubiquitination is involved in many cellular processes, such as protein degradation, DNA repair, and signal transduction pathways. Ubiquitin‐conjugating (E2) enzymes of the ubiquitination pathway are associated with various cancers, such as leukemia, lung cancer, and gastric cancer. However, to date, detection of E2 activities is not practicable for capturing the pathological conditions of cancers due to complications related to the enzymatic cascade reaction. To overcome this hurdle, we have recently investigated a novel strategy for measuring E2 activities. Artificial RING fingers (ARFs) were developed to conveniently detect E2 activities during the ubiquitination reaction. ARFs were created by grafting the active sites of ubiquitin‐ligating (E3) enzymes onto amino acid sequences with 38 residues. The grafting design downsized E3s to small molecules (ARFs). Such an ARF is a multifunctional molecule that possesses specific E2‐binding capabilities and ubiquitinates itself without a substrate. In this review, we discuss the major findings from recent investigations on a new molecular design for ARFs and their simplified detection system for E2 activities. The use of the ARF allowed us to monitor E2 activities using acute promyelocytic leukemia (APL)‐derived cells following treatment with the anticancer drug bortezomib. The molecular design of ARFs is extremely simple and convenient, and thus, may be a powerful tool for protein engineering. The ARF methodology may reveal a new screening method of E2s that will contribute to diagnostic techniques for cancers.  相似文献   

7.
The ubiquitin‐conjugating (E2) enzymes of protein ubiquitination are associated with various diseases such as leukemia, lung cancer, and breast cancer. Rapid and accurate detection of E2 enzymatic activities remains poor. Here, we described the detection of E2 activity on a signal accumulation ISFET biosensor (AMIS sensor) using an artificial RING finger (ARF). The use of ARF enables the simplified detection of E2 activity without a substrate. The high‐sensitivity quantitative detection of E2 activities was demonstrated via real‐time monitoring over a response range of femtomolar to micromolar concentrations. Furthermore, the monitoring of E2 activities was successfully achieved using human acute promyelocytic leukemia cells following treatment with the anticancer drug bortezomib, which allowed the assessment of the pathological conditions. This strategy is extremely simple and convenient, and the present detection could be widely applied to specific E2s for various types of cancers. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
TRIM家族是一个结构保守、进化快速的蛋白家族,它参与了细胞凋亡、周期调控、细胞对病毒的应答等重要的生命过程。结构上的保守预示着TRIM家族可能是以一种共同的机制参与各种生命过程的。最近的一些研究显示TRIM家族可能是一类新的RING指泛素连接酶。  相似文献   

9.
    
Synaptotagmin‐like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N‐terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N‐terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross‐brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C4C4‐type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin‐conjugating enzyme (E2)‐binding capability, cross‐brace structures with eight zinc‐ligating residues are needed as the scaffold. The cross‐brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs.  相似文献   

10.
    
  相似文献   

11.
RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.  相似文献   

12.
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

13.
The really interesting new gene (RING) family of proteins contains over 400 members with diverse physiological functions. A subset of these domains is found in the context of the RING-IBR-RING/TRIAD motifs which function as E3 ubiquitin ligases. Our sequence analysis of the C-terminal RING (RING2) from this motif show that several metal ligating and hydrophobic residues critical for the formation of a classical RING cross-brace structure are not present. Thus, we determined the structure of the RING2 from the RING-IBR-RING motif of HHARI and showed that RING2 has a completely distinct topology from classical RINGs. Notably, RING2 binds only one zinc atom per monomer rather than two and uses a different hydrophobic network to that of classical RINGs. Additionally, this RING2 topology is novel, bearing slight resemblance to zinc-ribbon motifs around the zinc site and is different from the topologies of the zinc binding sites found in RING and PHDs. We demonstrate that RING2 acts as an E3 ligase in vitro and using mutational analysis deduce the structural features required for this activity. Further, mutations in the RING-IBR-RING of Parkin cause a rare form of Parkinsonism and these studies provide an explanation for those mutations that occur in its RING2. From a comparison of the RING2 structure with those reported for RINGs, we infer sequence determinants that allow discrimination between RING2 and RING domains at the sequence analysis level.  相似文献   

14.
Terf/TRIM17 is a member of the TRIM family of proteins, which is characterized by the RING finger, B-box, and coiled-coil domains. In the present study, we found that terf interacts with TRIM44. Terf underwent ubiquitination in vitro in the presence of the E2 enzyme UbcH6; this suggests that terf exhibits E3 ubiquitin ligase activity. It was also found that terf was conjugated with polyubiquitin chains and stabilized by the proteasome inhibitor in mammalian cells; this suggested that terf rendered itself susceptible to proteasomal degradation through polyubiquitination. We also found that TRIM44 inhibited ubiquitination of terf, and thus stabilized the protein. The N-terminal region of TRIM44 contains a zinc-finger domain found in ubiquitin hydrolases (ZF UBP) and ubiquitin specific proteases (USPs). Thus, we proposed that TRIM44 may function as a new class of the “USP-like-TRIM” which regulates the activity of associated TRIM proteins.  相似文献   

15.
    
Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by a peroxisomal targeting sequence (PTS) and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the peroxisomal lumen, whereas the receptor is released to the cytosol for further rounds of protein import. This cycle is controlled by the ubiquitination status of the receptor, which is best understood for the PTS1‐receptor. While polyubiquitination of PTS‐receptors results in their proteasomal degradation, the monoubiquitinated PTS‐receptors are exported to the cytosol and recycled for further rounds of protein import. Here, we describe the identification of two ubiquitination cascades acting on the PTS2 co‐receptor Pex18p. Using in vivo and in vitro approaches, we demonstrate that the polyubiquitination of Pex18p requires the ubiquitin‐conjugating enzyme (E2) Ubc4p, which cooperates with the RING (really interesting new gene)‐type ubiquitin‐protein ligases (E3) Pex2p as well as Pex10p. Monoubiquitination of Pex18p depends on the E2 enzyme Pex4p (Ubc10p), which functions in concert with the E3 enzymes Pex12p and Pex10p. Our findings for the PTS2‐pathway complement the data on PTS1‐receptor ubiquitination and add up to a unified concept of the ubiquitin‐based regulation of peroxisomal import .  相似文献   

16.
17.
    
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2–E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2–E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2–RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short‐pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism‐enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle‐touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING‐containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号