首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Corey EA  Iorio RM 《Journal of virology》2007,81(18):9900-9910
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.  相似文献   

2.
As we have shown previously, release of measles virus (MV) from polarized epithelial cells is not determined by the viral envelope proteins H and F. Although virus budding is restricted to the apical surfaces, both proteins were abundantly expressed on the basolateral surface of Madin-Darby canine kidney cells. In this report, we provide evidence that the basolateral expression of the viral proteins is of biological importance for the MV infection of polarized epithelial cells. We demonstrate that both MV glycoproteins possess a basolateral targeting signal that is dependent upon the unique tyrosine in the cytoplasmic tails. These tyrosines are shown to be also part of an endocytosis signal. In MV-infected cells, internalization of the glycoproteins was not observed, indicating that recognition of the endocytosis signals is disturbed by viral factors. In contrast, basolateral transport was not substantially hindered, resulting in efficient cell-to-cell fusion of polarized Madin-Darby canine kidney cells. Thus, recognition of the signals for endocytosis and polarized transport is differently regulated in infected cells. Mutation of the basolateral sorting signal in one of the MV glycoproteins prevented fusion of polarized cells. These results suggest that basolateral expression of the MV glycoproteins favors virus spread in epithelia.  相似文献   

3.
The glycoprotein complex of paramyxoviruses mediates receptor binding and membrane fusion. In particular, the measles virus (MV) fusion (F) protein executes membrane fusion, after receptor binding by the hemagglutinin (H) protein. Structures and single amino acids influencing fusion function have been identified in the F-protein ectodomain and cytoplasmic tail, but not in its transmembrane (TM) region. Since this region influences function of the envelope proteins of other viruses, we examined its role in the MV F protein. Alanine-scanning mutagenesis revealed that an F protein with a single mutation of a central TM region leucine (L507A) was more fusogenic than the unmodified F protein while retaining similar kinetics of proteolytic processing. In contrast, substitution of residues located near the edges of the lipid bilayer reduced fusion activity. This was true not only when the mutated F proteins were coexpressed with H but also in the context of infections with recombinant viruses. Analysis of the H-F complexes with reduced fusion activities revealed that more precursor (F0) than activated (F1+2) protein coprecipitated with H. In contrast, in complexes with enhanced fusion activity, including H-FL507A, the F0/F1+2 ratio shifted toward F1+2. Thus, fusion activity correlated with an active F-H protein complex, and the MV F protein TM region modulated availability of this complex.  相似文献   

4.
Expression of the measles virus (MV) F/H complex on the surface of viral particles, infected cells, or cells transfected to express these proteins (presenter cells [PC]) is necessary and sufficient to induce proliferative arrest in both human and rodent lymphoid cells (responder cells [RC]). This inhibition was found to occur independent of apoptosis and soluble mediators excluded by a pore size filter of 200 nm released from either PC or RC. We now show that reactive oxygen intermediates which might be released by RC or PC also do not contribute to MV-induced immunosuppression in vitro. Using an inhibitor of Golgi-resident mannosidases (deoxymannojirimycin), we found that complex glycosylation of the F and H proteins is not required for the induction of proliferative arrest of RC. As revealed by our previous studies, proteolytic cleavage of the MV F protein precursor into its F1 and F2 subunits, but not of F/H-mediated cellular fusion, was found to be required, since fusion-inhibitory peptides such as Z-D-Phe-L-Phe-Gly (Z-fFG) did not interfere with the induction of proliferative inhibition. We now show that Z-fFG inhibits cellular fusion at the stage of hemifusion by preventing lipid mixing of the outer membrane layer. These results provide strong evidence for a receptor-mediated signal elicited by the MV F/H complex which can be uncoupled from its fusogenic activity is required for the induction of proliferative arrest of human lymphocytes.  相似文献   

5.
Paramyxovirinae envelope glycoproteins constitute a premier model to dissect how specific and dynamic interactions in multisubunit membrane protein complexes can control deep-seated conformational rearrangements. However, individual residues that determine reciprocal specificity of the viral attachment and fusion (F) proteins have not been identified. We have developed an assay based on a pair of canine distemper virus (CDV) F proteins (strains Onderstepoort (ODP) and Lederle) that share approximately 95% identity but differ in their ability to form functional complexes with the measles virus (MV) attachment protein (H). Characterization of CDV F chimeras and mutagenesis reveals four residues in CDV F-ODP (positions 164, 219, 233, and 317) required for productive interaction with MV H. Mutating these residues to the Lederle type disrupts triggering of F-ODP by MV H without affecting functionality when co-expressed with CDV H. Co-immunoprecipitation shows a stronger physical interaction of F-ODP than F-Lederle with MV H. Mutagenesis of MV F highlights the MV residues homologous to CDV F residues 233 and 317 as determinants for physical glycoprotein interaction and fusion activity under homotypic conditions. In assay reversal, the introduction of sections of the CDV H stalk into MV H shows a five-residue fragment (residues 110-114) to mediate specificity for CDV F-Lederle. All of the MV H stalk chimeras are surface-expressed, show hemadsorption activity, and trigger MV F. Combining the five-residue H chimera with the CDV F-ODP quadruple mutant partially restores activity, indicating that the residues identified in either glycoprotein contribute interdependently to the formation of functional complexes. Their localization in structural models of F and H suggests that placement in particular of F residue 233 in close proximity to the 110-114 region of H is structurally conceivable.  相似文献   

6.
The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes.  相似文献   

7.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

8.
Measles virus (MV)-specific murine helper T cell clones (Thy-1.2+, CD4+, CD8-) were generated from mice immunized with MV-infected mouse brain homogenate by limiting dilution and in vitro stimulation of spleen cells with UV-inactivated MV Ag. The protein specificity of 7 out of 37 stable T cell clones, which displayed MHC-restricted MV Ag recognition, could be assessed by using purified MV proteins. Two fusion (F) protein-specific, two hemagglutinin-specific, and three nucleoprotein- or matrix protein-specific clones were shown to be established. The F protein-specific T cell clones together with a panel of previously generated F protein-specific T cell clones were characterized for their fine specificity by using beta-galactosidase fusion products, which contained different parts of the F protein. It was shown that at least two epitopes on the major part of the F protein (amino acid 2-513) can be recognized by mouse T cells. Functional characterization of three T cell clones showed that they were able to assist MV-specific B cells and bystander B cells for antibody production. Furthermore, they were shown to produce the lymphokines IL-2 and IFN-gamma. It was also shown that these T cell clones induced a MV-specific delayed type hypersensitivity response. These observations suggest that all of the T cell clones characterized belong to the TH1 helper subset.  相似文献   

9.
The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM]]; n = 4) of two somatostatin binding sites identified in control Jurkat cells (Ki1 = 78 +/- 3 pM and Ki2 = 12 +/- 4 nM [mean +/- SEM]; n = 4) was also observed. Almost identical results were obtained for phytohemagglutinin-activated human PBMC. In the absence of MV infection, two somatostatin binding sites were present (Ki1 = 111 +/- 31 pM and Ki2 = 17 +/- 2 nM [mean +/- SEM]; n = 2), whereas in MV-infected cells, only the high-affinity (Ki1 = 48 +/- 15 pM [mean +/- SEM]; n = 2) binding site remained. In addition, MV infection reinforced the inhibitory effects of SRIF on adenylyl cyclase activity, since maximal inhibition at 1 microM peptide was 11% +/- 4% in control cells versus 25% +/- 3% (P < 0.05) in infected Jurkat cells. Moreover, MV infection severely impaired the capacity of adenylyl cyclase to be activated directly (by forskolin) or indirectly (via Gs protein-coupled vasoactive intestinal peptide receptor). An assessment of [methyl-3H]thymidine incorporation showed that SRIF increased proliferative responses to mitogens only in control cells, not in MV-infected cells. Altogether, our data emphasize that MV-associated alteration of SRIF transduction appears to be related to the loss of SRIF-dependent increase of mitogen-induced proliferation.  相似文献   

10.
During measles virus (MV) replication, approximately half of the internal M and N proteins, together with envelope H and F glycoproteins, are selectively enriched in microdomains rich in cholesterol and sphingolipids called membrane rafts. Rafts isolated from MV-infected cells after cold Triton X-100 solubilization and flotation in a sucrose gradient contain all MV components and are infectious. Furthermore, the H and F glycoproteins from released virus are also partly in membrane rafts (S. N. Manié et al., J. Virol. 74:305-311, 2000). When expressed alone, the M but not N protein shows a low partitioning (around 10%) into rafts; this distribution is unchanged when all of the internal proteins, M, N, P, and L, are coexpressed. After infection with MGV, a chimeric MV where both H and F proteins have been replaced by vesicular stomatitis virus G protein, both the M and N proteins were found enriched in membrane rafts, whereas the G protein was not. These data suggest that assembly of internal MV proteins into rafts requires the presence of the MV genome. The F but not H glycoprotein has the intrinsic ability to be localized in rafts. When coexpressed with F, the H glycoprotein is dragged into the rafts. This is not observed following coexpression of either the M or N protein. We propose a model for MV assembly into membrane rafts where the virus envelope and the ribonucleoparticle colocalize and associate.  相似文献   

11.
Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor.  相似文献   

12.
The pH-independent fusion of membranes induced by measles virus (MV) requires, in addition to the fusion-competent protein F, hemagglutinin (H), and on the target membrane, the virus receptor CD46. We constructed hybrid receptors composed of different numbers and combinations of the four CD46 short consensus repeat (SCR) domains, followed by immunoglobulin-like domains of another cell surface protein, CD4. Hybrid proteins containing SCRs I and II bound MV particles and conferred fusion competence to rodent cells. SCRs III and/or IV strengthened MV binding. Increasing the distance between the MV binding site and the transmembrane domain enhanced virus binding but reduced fusion efficiency. A hybrid protein predicted to be about 120 Angstroms (12 nm) longer than the standard receptor lost fusion support function and was dominant negative over a functional receptor. These data indicate that receptor protein length influences virus binding and determines fusion efficiency.  相似文献   

13.
A profound, transient suppression of immune functions during and after the acute infection is the major cause of more than one million cases of infant deaths associated with measles worldwide. Concommittant with the generation of an efficient measles virus (MV) specific immunity, immune responses towards other pathogens are strongly impaired and provide the basis for the establishment and severe course of opportunistic infections. The molecular basis for MV-induced immunosuppression has not been resolved as yet. Similar to other immunosuppressive viruses, MV is lymphotropic and viral nucleic acid and proteins are detectable in peripheral blood mononuclear cells (PBMC). It is considered central to MV-induced immunosuppression that PBMC isolated from patients largely fail to proliferate in response to antigen specific and polyclonal stimulation. The low abundancy of MV-infected PBMC suggests that MV-induced immunosuppression is not directly caused by infection-mediated cell loss or fusion, but rather by indirect mechanisms such as deregulation of cytokines or surface contact-mediated signaling which may lead to apoptosis or impair the proliferative response of uninfected PBMC. Evidence for a role of any of these mechanisms was obtained in vitro, however, much has still to be learned about the tropism of MV and its interactions with particular host cells such as dendritic cells in vivo.  相似文献   

14.
Measles virus (MV) rarely induces lethal diseases of the human central nervous system characterized by reduced expression of the viral envelope proteins and by lack of viral budding. The MV envelope contains two integral membrane proteins, termed fusion (F) protein and hemagglutinin (H) protein, and a membrane-associated matrix (M) protein. Previously, analysis of MV genes from autopsy material indicated that the M protein and the F protein intracellular domain are often drastically altered by mutations. Here, we present evidence that truncation of the F protein intracellular domain does not impair fusion function, and we suggest that this alteration interferes with viral budding. Unexpectedly, certain combinations of functional F and H proteins were unable to induce syncytium formation, an observation suggesting that specific F-H protein interactions are required for cell fusion. We also found that three of four H proteins of persistent MVs are defective in intracellular transport, oligosaccharide modification, dimerization, and fusion helper function. Thus, MVs replicating in the brain at the terminal stage of infection are typically defective in M protein and in the two integral membrane proteins. Whereas the M protein appears dispensable altogether, partial preservation of F-protein function and H-protein function seems to be required, presumably to allow local cell fusion. Certain subtle alterations of the F and H proteins may be instrumental for disease development.  相似文献   

15.
Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism.  相似文献   

16.
Moll M  Klenk HD  Maisner A 《Journal of virology》2002,76(14):7174-7186
The generation of replication-competent measles virus (MV) depends on the incorporation of biologically active, fusogenic glycoprotein complexes, which are required for attachment and penetration into susceptible host cells and for direct virus spread by cell-to-cell fusion. Whereas multiple studies have analyzed the importance of the ectodomains of the MV glycoproteins hemagglutinin (H) and fusion protein (F), we have investigated the role of the cytoplasmic tails of the F and H proteins for the formation of fusogenic complexes. Deletions in the cytoplasmic tails of transiently expressed MV glycoproteins were found to have varying effects on receptor binding, fusion, or fusion promotion activity. F tail truncation to only three amino acids did not affect fusion capacity. In contrast, truncation of the H cytoplasmic tail was limited. H protein mutants with cytoplasmic tails of <14 residues no longer supported F-mediated cell fusion, predominantly due to a decrease in surface expression and receptor binding. This indicates that a minimal length of the H protein tail of 14 amino acids is required to ensure a threshold local density to have sufficient accumulation of fusogenic H-F complexes. By using reverse genetics, a recombinant MV with an F tail of three amino acids (rMV-FcDelta30), as well as an MV with an H tail of 14 residues (rMV-HcDelta20), could be rescued, whereas generation of viruses with shorter H tails failed. Thus, glycoprotein truncation does not interfere with the successful generation of recombinant MV if fusion competence is maintained.  相似文献   

17.
Measles virus (MV) fusion requires the participation of both the fusion (F) and hemagglutinin (H) glycoproteins. The canine distemper virus fusion protein (CDVF) cannot substitute for the measles virus fusion protein (MVF) in this process. Introduction of restriction enzyme sites into the cDNAs of CDVF and MVF by site-directed mutagenesis facilitated the production of chimeric F proteins which were tested for their capacity to give fusion when coexpressed with MVH. Fusion resulted when the amino-terminal half of the MVF cysteine-rich region was transferred to CDVF.  相似文献   

18.
Dendritic cells (DC) have been proposed to play a pivotal role in transient immune suppression induced by measles virus (MV) infection. In the present study, we show that DC-induced suppression of T-cell proliferation was not mediated by IL-10 or IFNalpha/beta, which are released following infection of DC, but required cell contacts between MV-infected DC and T cells. Human sera containing neutralizing anti-MV antibodies, as well as anti-MV hemagglutinin (HA) or fusion protein (F) mAbs, were found (i) to reverse suppression and (ii) to restore DC allostimulatory capacity. Interestingly, DC-induced T-cell suppression was associated with both phenotypic and functional DC maturation, as demonstrated by IL-12 production and chemotaxis to MIP-3beta. These data suggest that MV infection turns on the maturation program of DC allowing migration to draining lymph nodes, where potent T-cell immune suppression might be achieved via cell surface expression of HA and F glycoproteins, independently of T cell trans-infection.  相似文献   

19.
We have identified the major cellular endoprotease that activates the fusion (F) glycoprotein of measles virus (MV) and have engineered a serine protease inhibitor (serpin) to target the endoprotease and inhibit the production of infectious MV. The F-protein precursor of MV was not cleaved efficiently into the mature F protein in human colon carcinoma cells lacking functional furin, indicating that furin is the major enzyme responsible for activation of the MV F protein. A human serpin alpha 1-antitrypsin variant was engineered to specifically inhibit furin. When expressed from a recombinant vaccinia virus in primate cells infected by MV, the engineered serpin (alpha 1-PDX) specifically inhibited furin-catalyzed cleavage of the F-protein precursor without affecting synthesis of other MV proteins. We generated human glioma cells stably expressing alpha 1-PDX. MV infection in these cells did not result in syncytia. The infected cells produced all the MV proteins, but the F-protein precursor remained largely uncleaved. This did not prevent virus assembly. However, the released virions contained inactive F-protein precursor rather than mature F protein, and infectious-virus titers were reduced by 3 to 4 orders of magnitude. These results show that a mature F protein is not required for the assembly of MV but is crucial for virus infectivity. The engineered serpin may offer a novel molecular antiviral approach against MV.  相似文献   

20.
cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号