首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.  相似文献   

2.
The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase A 2 and proteolytic activities of these venoms.  相似文献   

3.
We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and S?o Bento in the Brazilian State of Maranh?o. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled contain both population-specific toxins and proteins shared by neighboring B. atrox populations. Mapping the molecular similarity between conspecific populations onto a physical map of B. atrox range provides clues for tracing dispersal routes that account for the current biogeographic distribution of the species. The proteomic pattern is consistent with a model of southeast and southwest dispersal and allopatric fragmentation northern of the Amazon Basin, and trans-Amazonian expansion through the Andean Corridor and across the Amazon river between Monte Alegre and Santarém. An antivenomic approach applied to assess the efficacy towards B. atrox venoms of two antivenoms raised in Costa Rica and Brazil using Bothrops venoms different than B. atrox in the immunization mixtures showed that both antivenoms immunodepleted very efficiently the major toxins (PIII-SVMPs, serine proteinases, CRISP, LAO) of paedomorphic venoms from Puerto Ayacucho (Venezuelan Amazonia) through S?o Bento, but had impaired reactivity towards PLA(2) and P-I SVMP molecules abundantly present in ontogenetic venoms. The degree of immunodepletion achieved suggests that each of these antivenoms may be effective against envenomations by paedomorphic, and some ontogenetic, B. atrox venoms.  相似文献   

4.
Bothrops cotiara is a venomous snake sporadically found in the province of Misiones in Argentina, South of Brazil and Paraguay. Data on the clinics of the envenomation produced by its bite and on its venom are scarce. There is no information on the neutralizing capacity of the antivenoms available. In this study, the lethal potency, hemorrhagic, necrotizing, coagulant and thrombin-like, defibrinogenating, indirect hemolytic and fibrinolytic activities of the venom of B. cotiara specimens from the province of Misiones were determined. The toxic activities were within the range of those described for the other Bothrops species from Argentina, and the electrophoretic and chromatographic studies showed similarities with those described for the other bothropic venoms. The immunochemical reactivity of six South American anti Viper antivenoms (ELISA) have a strong reactivity with all the antivenoms studied. The neutralizing capacity of three of these therapeutic antivenoms against the lethal potency and hemorrhagic, necrotizing, coagulant, thrombin-like and hemolytic activities showed a very close neutralizing capacity. Our data strongly suggest that the antivenoms for therapeutic use available in this area of South America are useful to neutralize the toxic and enzymatic activities of the venom of this uncommon specie of Bothrops.  相似文献   

5.
We report the comparative proteomic characterization of the venoms of Bothrops atrox, B. barnetti and B. pictus. The venoms were subjected to RP-HPLC and the resulting fractions analyzed by SDS-PAGE. The proteins were cut from the gels, digested with trypsin and identified via peptide mass fingerprint and manual sequencing of selected peptides by MALDI-TOF/TOF mass spectrometry. Around 20-25 proteins were identified belonging to only 6-7 protein families. Metalloproteinases of the classes P-I and P-III were the most abundant proteins in all venoms (58-74% based on peak area A214 nm), followed by phospholipases-A(2) (6.4-14%), disintegrins (3.2-9%) and serine proteinases (7-11%), and some of these proteins occurred in several isoforms. In contrast cysteine-rich secretory proteins and L-amino acid oxidases appeared only as single isoforms and were found only in B. atrox and B. barnetti. C-type lectins were also detected in all venoms but at low levels (~ 5%). Furthermore, the venoms contain variable numbers of peptides (<3 kDa) and non-protein compounds which were not considered in this work. The protein composition of the investigated Bothrops species is in agreement with their pharmacological and pathological effects.  相似文献   

6.
We report the comparative proteomic characterization of the venoms of two related neotropical arboreal pitvipers from Costa Rica of the genus Bothriechis, B. lateralis (side-striped palm pit viper) and B. schlegelii (eyelash pit viper). The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venom proteomes of B. lateralis and B. schlegelii comprise similar number of distinct proteins belonging, respectively, to 8 and 7 protein families. The two Bothriechis venoms contain bradykinin-potentiating peptides (BPPs), and proteins from the phospholipase A 2 (PLA 2), serine proteinase, l-amino acid oxidase (LAO), cysteine-rich secretory protein (CRISP), and Zn (2+)-dependent metalloproteinase (SVMP) families, albeit each species exhibit different relative abundances. Each venom also contains unique components, for example, snake venom vascular endothelial growth factor (svVEGF) and C-type lectin-like molecules in B. lateralis, and Kazal-type serine proteinase inhibitor-like proteins in B. schlegelii. Using a similarity coefficient, we estimate that the similarity of the venom proteins between the two Bothriechis taxa may be <10%, indicating a high divergence in their venom compositions, in spite of the fact that both species have evolved to adapt to arboreal habits. The major toxin families of B. lateralis and B. schlegelii are SVMP (55% of the total venom proteins) and PLA 2 (44%), respectively. Their different venom toxin compositions provide clues for rationalizing the distinct signs of envenomation caused by B. schlegelii and B. lateralis. An antivenomic study of the immunoreactivity of the Instituto Clodomiro Picado (ICP) polyvalent antivenom toward Bothriechis venoms revealed that l-amino acid oxidase and SVMPs represent the major antigenic protein species in both venoms. Our results provide a ground for rationalizing the reported protection of the ICP polyvalent antivenom against the hemorrhagic, coagulant, defibrinating, caseinolytic and fibrin(ogen)olytic activities of Bothriechis ( schlegelii, lateralis) venoms. However, these analyses also evidenced the limited recognition capability of the polyvalent antivenom toward a number of Bothriechis venom components, predominantly BPPs, svVEGF, Kazal-type inhibitors, some PLA 2 proteins, some serine proteinases, and CRISP molecules.  相似文献   

7.
We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.  相似文献   

8.
1. The elution profiles and the caseinolytic, myotoxic, coagulant and hemorrhagic activities of the venoms of seven Bothrops species fractionated on a Mono-Q FPLC column were analyzed. 2. Each venom separated into 16-20 peaks, with good reproducibility and the activities were concentrated in virtually discrete regions of the chromatogram. 3. There is a considerable overlap of active proteins in the different species venoms and our results indicate that a venom pool with the species B. jararaca, B. jararacussu, B. moojeni, B. neuwiedi and B. atrox venoms would contain the major active proteins determined in the seven species.  相似文献   

9.
Phospholipases A(2) (PLA(2)) are multifunctional proteins which exhibit varied biological activities correlated to the structural diversities of the sub-classes. The crude aqueous extract from subterranean system of Mandevilla velutina, a plant found in Brazilian savanna, was assayed for its ability to inhibit biological activities of several snake venoms and isolated PLA(2)s. The extract induced total inhibition of the phospholipase activity of Crotalus durissus terrificus venom and only partial inhibition of Bothrops venoms. When assayed against purified toxins, the highest efficacy was detected against CB and crotoxin, while almost ineffective against PLA(2)s from the genus Bothrops. Although M. velutina crude extract significantly inhibited the myotoxic activity of C. d. terrificus venom and CB, it produced only partial inhibition of either Bothrops jararacussu venom or its main myotoxins BthTX-I (basic Lys49), BthTX-II (basic Asp49) and BthA-I-PLA(2) (acidic Asp49). The extract exhibited also full inhibition of hemorrhage caused by Bothrops alternatus, Bothrops moojeni and Bothrops pirajai snake venoms, but partial inhibition (90%) of that induced by B. jararacussu venom. The extract was ineffective to inhibit the fibrinogenolytic activity of B. moojeni, B. alternatus and B. pirajai crude venoms, while their caseinolytic activity was only partially inhibited. No inhibition of the anticoagulant activity, although partial reduction of the edema-inducing activity of C. d. terrificus and B. alternatus crude venoms, CB, PrTX-I, BthTX-I and crotoxin was observed. Besides extending survival of mice injected with lethal doses of C. d. terrificus and B. jararacussu venoms, M. velutina extract decreased to 50% the lethality of mice. Extracts of 18 month old micropropagated plants were able to partially neutralize the effect of the crude venoms and toxins.  相似文献   

10.
Cogo JC  Lilla S  Souza GH  Hyslop S  de Nucci G 《Biochimie》2006,88(12):1947-1959
Bothrops snake venoms contain a variety of phospholipases (PLA(2)), some of which are myotoxic. In this work, we used reverse-phase HPLC and mass spectrometry to purify and sequence two PLA(2) from the venom of Bothrops insularis. The two enzymes, designated here as BinTX-I and BinTx-II, were acidic (pI 5.05 and 4.49) Asp49 PLA(2), with molecular masses of 13,975 and 13,788, respectively. The amino acid sequence and molecular mass of BinTX-I were identical to those of a PLA(2) previously isolated from this venom (PA2_BOTIN, SwissProt accession number ) while those of BinTX-II indicated that this was a new enzyme. Multiple sequence alignments with other Bothrops PLA(2) showed that the amino acids His48, Asp49, Tyr52 and Asp99, which are important for enzymatic activity, were fully conserved, as were the 14 cysteine residues involved in disulfide bond formation, in addition to various other residues. A phylogenetic analysis showed that BinTX-I and BinTX-II grouped with other acidic Asp49 PLA(2) from Bothrops venoms, and computer modeling indicated that these enzymes had the characteristic structure of bothropic PLA(2) that consisted of three alpha-helices, a beta-wing, a short helix and a calcium-binding loop. BinTX-I (30 microg/paw) produced mouse hind paw edema that was maximal after 1h compared to after 3h with venom (10 and 100 microg/paw); in both cases, the edema decreased after 6h. BinTX-1 and venom (40 microg/ml each) produced time-dependent neuromuscular blockade in chick biventer cervicis preparations that reached 40% and 95%, respectively, after 120 min. BinTX-I also produced muscle fiber damage and an elevation in CK, as also seen with venom. These results indicate that BinTX-I contributes to the neuromuscular activity and tissue damage caused by B. insularis venom in vitro and in vivo.  相似文献   

11.
Bothrops moojeni crude venom (MjCV) and its two major toxins, namely myotoxin I (MjTX-I) and myotoxin II (MjTX-II) were alkylated by p-bromophenacyl bromide (BPB). After alkylation the i.p. LD(50) (mice) of MjCV and MjTX-I/II increased from 6.0 to 15.7mg/kg and from 8.0 to 45.0mg/kg, respectively. In addition, doses of 5x LD(50) of alkylated MjTX-I did not cause a single death in mice and no myonecrosis was detected for the alkylated toxins, although both proteins still induced edema. Antibodies to native and modified crude venom or myotoxins cross-reacted with 12 purified class II myotoxic phospholipases A(2) found in snake venoms of the genus Bothrops. Myotoxic PLA(2)s from class I and class III were not recognized by the above antibodies. These results suggest that the overall antigenic structure is conserved among class II myotoxic PLA(2)s, despite differences in their amino acid sequences. Anti-MjTX-I-BPB and anti-MjTX-II-BPB rabbit serum, obtained against the modified myotoxins, were apparently more efficient than those obtained against the native myotoxins. In neutralization experiments, pre-incubation of crude venom or isolated myotoxins with antibodies raised against the native or modified toxins inhibited their PLA(2) and myotoxic activities. Therefore, alkylation of His48 by BPB strongly reduces the local tissue damage induced by B. moojeni venom or isolated myotoxins while retaining antigenicity, which suggests a promising procedure for an enhanced antiophidian serum production for practical purposes.  相似文献   

12.
13.
In this study, we isolated a novel prothrombin activator from the venom of Bothrops cotiara, a Brazilian lance-headed pit viper (Cotiara, Jararaca preta, Biocotiara), which we have designated "cotiaractivase" (prefix: cotiar- from B. cotiara; suffix: -activase, from prothrombin activating activity). Cotiaractivase was purified using a phenyl-Superose hydrophobic interaction column followed by a Mono-Q anion exchange column. It is a single-chain polypeptide with a molecular weight of 22,931 Da as measured by mass spectroscopy. Cotiaractivase generated active alpha-thrombin from purified human prothrombin in a Ca2+-dependent manner as assessed by S2238 chromogenic substrate assay and SDS-PAGE. Cotiaractivase cleaved prothrombin at positions Arg271-Thr272 and Arg320-Ile321, which are also cleaved by factor Xa. However, the rate of thrombin generation by cotiaractivase was approximately 60-fold less than factor Xa alone and 17 x 10(6)-fold less than the prothrombinase complex. The enzymatic activity of cotiaractivase was inhibited by the chelating agent EDTA, whereas the serine protease inhibitor PMSF had no effect on its activity, suggesting that it is a metalloproteinase. Interestingly, S2238 inhibited cotiaractivase activity non-competitively, suggesting that this toxin contains an exosite that allows it to bind prothrombin independently of its active site. Tandem mass spectrometry and N-terminal sequencing of purified cotiaractivase identified peptides that were identical to regions of the cysteine-rich and disintegrin-like domains of known snake venom metalloproteinases. Cotiaractivase is a unique low molecular weight snake venom prothrombin activator that likely belongs to the metalloproteinase family of proteins.  相似文献   

14.
In order to better understand the function of acidic phospholipases A2 (PLA2s) from snake venoms, expressed sequence tags (ESTs) that code for acidic PLA2s were isolated from a cDNA library prepared from the poly(A)+ RNA of venomous glands of Bothrops jararacussu. The complete nucleotide sequence (366 bp), named BOJU-III, encodes the BthA-I-PLA2 precursor, which includes a signal peptide and the mature protein with 16 and 122 amino acid residues, respectively. Multiple comparison of both the nucleotide and respective deduced amino acid sequence with EST and protein sequences from databases revealed that the full-length cDNA identified (BOJU III--AY145836) is related to an acidic PLA2 sharing similarity, within the range 55-81%, with acidic phospholipases from snake venoms. Moreover, phylogenetic analysis of amino acid sequences of acidic PLA2s from several pit viper genera showed close evolutionary relationships among acidic PLA2s from Bothrops, Crotalus, and Trimeresurus. The molecular modeling showed structural similarity with other dimeric class II PLA2s from snake venoms. The native protein BthA-I-PLA2, a nontoxic acidic PLA2 directly isolated from Bothrops jararacussu snake venom, was purified and submitted to various bioassays. BthA-I-PLA2 displayed high catalytic activity and induced Ca2+-dependent liposome disruption. Edema induced by this PLA2 was inhibited by indomethacin and dexamethasone, thus suggesting involvement of the cyclo-oxygenase pathway. BthA-I-PLA2 showed anticoagulant activity upon human plasma and inhibited phospholipid-dependent platelet aggregation induced by collagen or ADP. In addition, it displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and antitumoral effect upon breast adrenocarcinoma as well as upon human leukemia T and Erlich ascitic tumor. Following chemical modification with p-bromophenacyl bromide, total loss of the enzymatic and pharmacological activities were observed. This is the first report on the isolation and identification of a cDNA encoding a complete acidic PLA2 from Bothrops venom, exhibiting bactericidal and antitumoral effects.  相似文献   

15.
The Bothrops neuwiedi (Neuwied's lancehead) species complex consists of a variety of subspecies with a wide distribution in South America. In this work, we compared the neuromuscular blockade caused by venoms from three subspecies (B. n. goyazensis, B. n. paranaensis and B. n. diporus) of this complex using chick biventer cervicis (BC) and mouse phrenic nerve-diaphragm (PND) preparations and investigated their phospholipase A2 (PLA2) activities and electrophoretic profiles. The order of potency of PLA2 activity was B. n. diporus>B. n. paranaensis>B. n. goyazensis. In BC preparations, B. n. goyazensis venom (50 microg/mL) was significantly (p<0.05) more active than B. n. paranaensis and B. n. diporus venoms, which did not produce a significant blockade at this time interval; after 120 min, B. n. goyazensis, B. n. paranaensis and B. n. diporus venoms (100 microg/mL) produced blockades of 57.4+/-5%, 30+/-3% and 17.4+/-7% (n=3-6 each), respectively. The three venoms inhibited contractures in response to ACh, indicating interference with postsynaptic neurotransmission. Only B. n. goyazensis and B. n. paranaensis venoms caused a long-lasting, concentration-dependent muscle contracture prior to blockade. In PND preparations, all of the venoms blocked the twitch-tension responses within 45-100 min, indicating that these preparations were more sensitive than avian preparations. There was a correlation between PLA2 activity and the time for 50% blockade in PND but not in BC preparations. SDS-PAGE showed quantitative rather than qualitative differences among the venoms. These results indicate that the venoms of the three subspecies had similar profiles of neuromuscular activity, although the relationship with PLA2 activity varied with the preparation used.  相似文献   

16.
A basic, dimeric myotoxic protein, myotoxin II, purified from Bothrops asper venom has a similar molecular weight and is immunologically cross-reactive with antibodies raised to previously isolated B. asper phospholipases A2, except that it shows only 0.1% of the phospholipase activity against L-alpha-phosphatidylcholine in the presence of Triton X-100. Its 121 amino acid sequence, determined by automated Edman degradation, clearly identifies it as a Lys-49 phospholipase A2. Key amino acid differences between myotoxin II and phospholipase active proteins in the Ca2(+)-binding loop region, include Lys for Asp-49, Asn for Tyr-28, and Leu for Gly-32. The latter substitution has not previously been seen in Lys-49 proteins. Other substitutions near the amino terminus (Leu for Phe-5 and Gln for several different amino acids at position 11) may prove useful for identifying other Lys-49 proteins in viperid and crotalid venoms. Myotoxin II shows greater sequence identity with other Lys-49 proteins from different snake venoms (Agkistrodon piscivorus piscivorus, Bothrops atrox, and Trimeresurus flavoviridis) than with another phospholipase A2 active Asp-49 molecule isolated from the same B. asper venom. This work demonstrates that phospholipase activity per se, is not required in phospholipase molecules for either myotoxicity or edema inducing activities.  相似文献   

17.
In the present study, an acidic PLA(2), designated Bl-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000Da and pI was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-α, IL-1β and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA(2) induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism.  相似文献   

18.
19.
20.
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M(r) approximately 14,000 for the monomer and 28,000Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA(2)s from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca(2+) ions for the enzymatic catalysis. Both PLA(2)s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号