首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
NG108-15 neuroblastoma x glioma hybrid cells and S49 lymphoma cells exhibit an enhancement in adenylyl cyclase activity after chronic treatment with receptor agonists that acutely inhibit the enzyme. Using agonists that activate five distinct inhibitory receptors in NG108-15 cells, we have found that there is a correlation between the extent of acute inhibition of prostaglandin E1 (PGE1)-stimulated cAMP accumulation and efficacy for induction of enhanced PGE1 stimulation of cAMP accumulation after chronic treatment and withdrawal. Chronic treatment with dideoxyadenosine, which acutely inhibits adenylyl cyclase activity by a mechanism independent or cell surface receptors or pertussis toxin-sensitive G proteins, did not induce enhanced PGE1 stimulation of cAMP accumulation in NG108-15 cells or forskolin stimulation of cAMP accumulation in S49 cells. While control basal cAMP concentrations were acutely decreased by carbachol in NG108-15 cells and by somatostatin in S49 cells, when the cAMP concentrations were maintained above the control basal values with a phosphodiesterase inhibitor, chronic treatment with these inhibitory drugs nonetheless resulted in enhanced cAMP responses in both NG108-15 and S49 cells. These results provide evidence that the initial decrement in cAMP concentrations caused by inhibitory drug is not the requisite signal for inducing the subsequent sensitization of adenylyl cyclase in NG108-15 and S49 cells but that activation of a pertussis toxin-sensitive G protein is involved in the development of this important adaptation.  相似文献   

2.
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.  相似文献   

3.
alpha 2-Adrenergic receptors, a population of receptors linked to inhibition of adenylate cyclase, accelerate Na+/H+ exchange in NG108-15 neuroblastoma x glioma cells (Isom, L. L., Cragoe, E. J., Jr., and Limbird, L. E. (1987) J. Biol. Chem. 262, 6750-6757). We now report that two other receptor populations linked to inhibition of adenylate cyclase, muscarinic cholinergic and delta-opiate receptors, also alkalinize the interior of NG108-15 cells, as measured with the pH-sensitive fluorescent probe, 2,7-biscarboxyethyl-5(6)-carboxy-fluorescein. Manipulations that block Na+/H+ exchange, i.e. removal of extracellular Na+, reduction of extracellular pH to equal that of intracellular pH, and addition of 5-amino-substituted analogs of amiloride, all block alpha 2-adrenergic, delta-opiate, or muscarinic cholinergic receptor-induced alkalinization in a parallel fashion. These data suggest that all three populations of receptors alkalinize NG108-15 cells by acceleration of Na+/H+ exchange and do so via a shared or similar mechanism. Although these three receptor populations are linked to inhibition of adenylate cyclase, decreased production of cAMP does not appear to be the mechanism responsible for receptor-accelerated Na+/H+ exchange. Thus, ADP-ribosylation of intact NG108-15 cells with Bordetella pertussis islet-activating protein prevents attenuation of prostaglandin E1-stimulated cAMP accumulation by alpha 2-adrenergic, muscarinic, and delta-opiate agonists but has no measurable effect on the ability of these agonists to accelerate Na+/H+ exchange. Similarly, manipulations that block receptor-accelerated Na+/H+ exchange influence but do not block receptor-mediated attenuation of cAMP accumulation. Thus, the present data suggest that these two receptor-mediated biochemical events, acceleration of Na+/H+ exchange and attenuation of cAMP accumulation, occur through divergent mechanisms in NG108-15 cells.  相似文献   

4.
Neurobiological actions of ethanol have been linked to perturbations in cyclic AMP (cAMP)-dependent signaling processes. Chronic ethanol exposure leads to desensitization of cAMP production in response to physiological ligands (heterologous desensitization). Ethanol-induced alterations in neuronal expression of G proteins G(s) and G(i) have been invoked as a cause of heterologous desensitization. However, effects of ethanol on G protein expression vary considerably among different experimental protocols, various brain regions and diverse neuronal cell types. Dynamic palmitoylation of G protein alpha subunits is critical for membrane localization and protein-protein interactions, and represents a regulatory feature of G protein function. We studied the effect of ethanol on G alpha(s) palmitoylation. In NG108-15 rat neuroblastoma x glioma hybrid cells, acute exposure to pharmacologically relevant concentrations of ethanol (25-100 mm) inhibited basal and prostaglandin E1-stimulated incorporation of palmitate into G alpha(s). Exposure of NG108-15 cells to ethanol for 72 h induced a shift in G alpha(s) to its non-palmitoylated state, coincident with an inhibition of prostaglandin E1-induced cAMP production. Both parameters were restored following 24 h of ethanol withdrawal. Chronic ethanol exposure also induced the depalmitoylation of G alpha(s) in human embryonic kidney (HEK)293 cells that overexpress wild-type G alpha(s) and caused heterologous desensitization of adenylyl cyclase. By contrast, HEK293 cells that express a non-palmitoylated mutant of G alpha(s) were insensitive to heterologous desensitization after chronic ethanol exposure. In summary, the findings identify a novel effect of ethanol on post-translational lipid modification of G alpha(s), and represent a mechanism by which ethanol might affect adenylyl cyclase activity.  相似文献   

5.
Antisera AS/6 and 7, raised against a synthetic peptide KENLKDCGLF corresponding to the carboxyl-terminal decapeptide of transducin-alpha, react on immunoblots with purified transducin-alpha and with proteins of 40-41 kDa in all tissues tested. The latter represent one or more forms of Gi alpha but not Go alpha, since a synthetic peptide, KNNLKDCGLF, corresponding to the carboxyl-terminal decapeptide of two forms of Gi alpha blocks AS/6 and 7 reactivity with transducin-alpha and Gi alpha on immunoblots, whereas the corresponding Go-related peptide, ANNLRGCGLY, does not. Antisera LE/2 and 3, raised against the synthetic peptide LERIAQSDYI, corresponding to an internal sequence predicted by one form of Gi alpha cDNA (Gi alpha-2) and differing by 3 residues from the sequence of another form, Gi alpha-1, react strongly with a 40-kDa protein abundant in neutrophil membranes and with the major pertussis toxin substrate purified from bovine neutrophils. LE/2 and 3 reveal a relatively faint 40-kDa band on immunoblots of crude brain membranes or of purified brain Gi/Go. LE/2 and 3 do not react with transducin-alpha or Go alpha nor with the 41-kDa form of pertussis toxin substrate in brain, Gi alpha-1. These antisera distinguish between the major pertussis toxin substrates of brain and neutrophil and tentatively identify the latter as Gi alpha-2.  相似文献   

6.
A G(o) type G protein distinct from the major species of G(o) was recently isolated from bovine brain and designated G(o)*. The cDNAs encoding two forms of mammalian G(o) alpha were also isolated and designated GoA alpha and GoB alpha. To recognize two forms of G(o) type G proteins, we raised antibodies in rabbits against two peptides with sequences found only in the respective proteins of murine GoA alpha (SNTYEDAAAYIQTQF) and GoB alpha (TEAVAHIQGQYWSK). Purified anti-GoA alpha antibodies reacted with the major species of G(o) alpha purified from bovine and rat brain, whereas anti-GoB alpha antibodies reacted only with rat G(o)*alpha, but not with the major species of G(o) alpha or bovine G(o)*alpha. These results indicate that the major species of G(o) alpha is encoded by GoA alpha cDNA and G(o)*alpha is encoded by GoB alpha cDNA. Using these antibodies, the distribution of GoA and GoB was studied in various rat tissues and cloned cells. Both GoA and GoB were present in many tissues, but their distribution in peripheral tissues was distinct. GoA alpha seemed to associate mainly with neural tissues. On the other hand, relatively high concentrations of GoB alpha were present in the brain, pituitary gland, adipose tissue, lung, and testis. The concentrations of both GoA and GoB in the brain increased during ontogenic development, but the increase in GoB was observed at a later age. Both GoA and GoB were found in such cloned cells as PC12, NG108-15, C6, GA-1, G8, and 3T3-L1 cells. Treatment of PC12 cells with nerve growth factor caused the extension of neuron-like processes and the increase in the level of GoA, but not in the level of GoB.  相似文献   

7.
8.
I Mullaney  G Milligan 《FEBS letters》1989,244(1):113-118
Each of a range of pharmacological agents which function to increase intracellular levels of cAMP caused a morphological 'differentiation' of neuroblastoma x glioma hybrid, NG108-15, cells grown in tissue culture. Associated with this differentiation, increased incorporation of [32P]ADP-ribose catalysed by pertussis toxin was noted into a band of some 39-40 kDa in membranes derived from these cells. Immunoblotting using two antipeptide antisera which identify different regions of Go alpha demonstrated marked increases in the levels of this polypeptide in membranes of the differentiated cells. However, levels of the beta-subunit did not increase appreciably with differentiation.  相似文献   

9.
Leu-enkephalin (Leu-Enk), norepinephrine (NE), somatostatin (SS), and bradykinin (BK) decrease the voltage-dependent calcium current in NG108-15 cells. Here we have investigated whether distinct G proteins, or a G protein common to all of the pathways, mediates this inhibition. We found that pertussis toxin (PTX) reduced all of these transmitter actions, except that of BK. To examine which of the PTX-sensitive pathways is transduced by GoA, we constructed an NG108-15 cell line that stably expresses a mutant, PTX-resistant alpha subunit of GoA. After treatment with PTX, the mutant GoA alpha rescued the Leu-Enk and NE pathways but not the SS pathway. At least three different G proteins can transduce receptor-mediated inhibition of calcium currents in nerve cells. The effects of these G proteins appear to converge on the omega-conotoxin GVIA-sensitive calcium current.  相似文献   

10.
Laminin is a potent stimulator ofneurite outgrowth. We have examined the signal transduction events involved in the neuronal cell response to laminin. Cyclic nucleotides, calcium, and sodium-proton exchange do not appear to be required for the transduction of the laminin signal during neurite outgrowth. Direct measurement of cAMP and cGMP levels shows no changes in NG108-15 cells when cultured on laminin. Exogenous cAMP alone had no effect on either the rate of process formation or process length, but did alter the morphology of laminin-induced neurites. A four-fold increase in the number of branches per neurite and a two-to-three-fold increase in the number of neurites per cell were observed in both NG108-15 and PC12 cells cultured on laminin when either 8-BrcAMP or forskolin was added. The cAMP-induced branching was also observed when PC12 cells were cultured on a laminin-derived synthetic peptide (PA22-2), which contains the neurite-promoting amino acid sequence IKVAV. By immunofluorescence analysis with axonal or dendritic markers, the PC12 processes on laminin and PA22-2 were axonal, not dendritic, and the cAMP-induced morphological changes were due to axonal branching. These data demonstrate that changes in cAMP are not involved in laminin-mediated neurite outgrowth, but cAMP can modulate the effects of laminin.  相似文献   

11.
12.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

13.
We have characterized the pertussis toxin substrate in NG 108-15 cell membranes using site-specific antisera and ADP-ribosylation. Cell membranes contain two pertussis toxin-sensitive guanine nucleotide-binding protein alpha-subunits (G alpha) whose Rf values in gel electrophoresis coincide with those of G alpha o and G alpha i2. The total quantity of Gi and Go immunoreactivity amounted to 24.3 +/- 2.8 pmol/mg, whereas only 1.5 +/- 0.2 pmol/mg are capable of undergoing ADP-ribosylation catalyzed by pertussis toxin. Pretreatment of cells with the agonist [D-Ala2,D-Leu2]-enkephalin (DADLE) for 24 h and DADLE or morphine for 72 h did not alter the incorporation of ADP-ribose or the immunoreactive amount of Gi and Go subunits. However, pretreatment for 72 h with naloxone increased the incorporation of ADP-ribose without an apparent change in affinity or in the immunochemically determined protein levels of Gi and Go. This indicates that the process of down-regulation and desensitization of the delta-opioid receptor neither requires quantitative alterations in the levels of Gi and Go nor changes in the degree of coupling among their subunits. In contrast, chronic exposure to antagonists seems to alter the degree of precoupling between alpha- and beta-subunits of Gi and/or Go.  相似文献   

14.
1. Aminoalkylindoles, typified by WIN 55212-2, bind to G protein-coupled cannabinoid receptors in brain. Although cannabinoids inhibit adenylyl cyclase in NG108-15 neuroblastoma × glioma hybrid cells, cannabinoid receptor binding in these cells has not been described previously. This study compares pharamcological characteristics of [3H]WIN 55212-2 binding sites in rat cerebellar membranes and in NG108-15 membranes.2. Although the K D of specifid [3H]WIN 55212-2 binding was similar in brain and NG108-15 membranes, the B max was 10 times lower in NG108-15 than in cerebellar membranes. In both brain and NG108-15 membranes, aminoalkylindole analogues were relatively potent in displacing [3H]WIN 55212-2 binding.However, IC50 values for more traditional cannabinoids were significantly higher in NG108-15 membranes than in brain, e.g., the K i values for CP55,940 were1.2nM in brain and >5000nM in NG108-15 membranes. Moreover, sodium and GTP--S decreased [3H]WIN 55212-2 binding in brain but not in NG108-15membranes.3. These data suggest that WIN 55212-2 does not label traditional cannabinoid receptors in NG108-15 cells and that these novel aminoalkylindolebinding sites are not coupled to G proteins.  相似文献   

15.
Abstract: Voltage-dependent Ca2+ currents were measured in NG108-15 neuroblastoma × glioma hybrid cells transformed to express the rat μ-opioid receptor by the whole-cell configuration of the patch-clamp technique with Ba2+ as charge carrier. A μ-opioid receptor-selective agonist, [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin caused significant inhibition of voltage-dependent Ca2+ currents in μ-receptor-transformed NG108-15 cells but not in nontransfected or vector-transformed control cells. On the other hand, a δ-opioid receptor-selective agonist, [ d -penicillamine2, d -penicillamine5]enkephalin, induced inhibition of voltage-dependent Ca2+ currents in both control and μ-receptor-transformed cells, which is mediated by the δ-opioid receptor expressed endogenously in NG108-15 cells. The inhibition of voltage-dependent Ca2+ currents induced by [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin and [ d -penicillamine2, d -penicillamine5]enkephalin was reduced by pretreatment of the cells with pertussis toxin or ω-conotoxin GVIA. These results indicate that the μ-opioid receptor expressed from cDNA functionally couples with ω-conotoxin-sensitive N-type Ca2+ channels through the action of pertussis toxin-sensitive G proteins in NG108-15 cells.  相似文献   

16.
Distribution of three isoenzymes of brain enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11) (alpha alpha, alpha gamma and gamma gamma forms) in clonal cell lines of neuroblastoma (NS20Y and N18TG-2), glioma (C6BU-1), and hybrid cells NG108-15, NCB20, Nbr10A, Nbr20A, N4G-B-a and N4G-C-a) was examined with a sensitive enzyme immunoassay system, that uses a rabbit antibody to rat brain enolase alpha alpha or gamma gamma. All cell lines tested were found to possess the enolase which contains gamma subunit (a neuron-specific protein), although the alpha alpha enolase (non-neuronal enolase) was the dominant from in these cells. A clonal rat glioma (C6BU-1) cell contained about 40, 1 and 0.07 microgram/mg protein of alpha alpha, alpha gamma and gamma gamma enolases, respectively, at the confluent stage. Inclusion of 1 mM dibutyryl cyclic AMP or 10 micrometers prostaglandin E1 plus 1 mM theophylline in the culture medium of a hybrid cell (NG108-15, mouse neuroblastoma x rat glioma) resulted in a more than 2-fold increase in the concentrations of alpha gamma and gamma gamma in the cell within a few days, with little change in the alpha alpha enolase concentration. A similar increase in the concentration of gamma subunit by the nucleotide (but not by prostaglandin E1 plus theophylline) was also observed in the glioma cell (C6BU-1) line. The results suggest that the gamma subunit or the neuron-specific protein can be regulated in NG108-15 and C6BU-1 cells in a cyclic AMP-dependent fashion.  相似文献   

17.
The characteristics of the specific bindings of [3H](+)PN200-110 (PN: L-type Ca channel antagonist) and [125I]-conotoxin G VI A (-CgTX: neuronal L-or N-type Ca channel antagonist) to crude membranes from undifferentiated neuroblastoma x glioma hybrid NG108-15 (NG108-15) cells and differentiated cells induced with dibutyryl cAMP (Bt2cAMP) were examined, because we have already observed that the magnitude and rate of KCL-stimulated45Ca uptake by NG108-15 cells increased progressively during differentiation of the cells induced with Bt2cAMP (unpublished results). The specific binding of [3H](+)PN to these crude membranes was saturable at various concentrations of 2.5–5.0 nM [3H](+)PN. Scatchard analysis showed that the specific binding of [3H](+)PN at equilibrium was significantly increased after differentiation of the NG108-15 cells with Bt2cAMP, but that the apparent Kd value for the specific binding of [3H](+)PN was not influenced by treatment with Bt2cAMP. The specific binding of [3H](+)PN to crude membranes from Bt2cAMP-treated NG108-15 cells was inhibited by a calcium agonist and antagonists, the order of their inhibitory potencies being (+)PN>nitrendipine>(–)PNBay K 8644diltiazem = verapamil. Thus, PNs showed significant stereoselective inhibition of the specific binding of [3H(+)PN. On the other hand, [125I]-CgTX at concentrations of 0.075–0.6 nM showed scarcely any specific binding to these crude membranes, although at 0.6 nM it showed specific binding to crude membranes from rat brain in the same experimental conditions. These results suggest that the increase in magnitude or rate of KCl-stimulated45Ca uptake during differentiation of NG108-15 cells is partially due to quantitative alteration of voltage-sensitive Ca channels in the cells, and that there are scarcely any specific binding sites for [125I]-CgTX on Bt2cAMP-treated or untreated NG108-15 cells.  相似文献   

18.
Abstract: We have compared the characteristics of receptors for nucleotide analogues and the involvement of phospholipase C (PLC) in the effector mechanism in NG108-15 neuroblastoma and C6 glioma cells. The relative potency of these analogues to stimulate inositol phosphate (IP) formation is UTP > UDP ? 2-methylthio-ATP (2-MeSATP), GTP > ATP, CTP > ADP > UMP in NG108-15 cells and ATP > UTP > ADP > GTP > UDP ? 2Me-SATP, CTP, UMP in C6 glioma cells. α,β-Methylene-ATP, β,γ-methylene-ATP, AMP, and adenosine had little or no effect in both types of cells. The EC50 values were 3 and 106 µM for UTP in NG108-15 and C6 glioma cells, respectively. The EC50 value for ATP in C6 glioma cells was 43 µM. 2-MeSATP was threefold more potent than ATP in NG108-15 cells but had little effect in C6 glioma cells at 1 mM. In NCB-20 cells, a similar rank order of potency to that found in NG108-15 cells, i.e., UTP ? GTP > ATP > CTP, was observed. In both NG108-15 and C6 glioma cells, preincubation with ATP or UTP caused a pronounced cross-desensitization of subsequent nucleotide-stimulated IP production. ATP and UTP displayed no additivity in terms of IP formation at maximally effective concentrations. In contrast, endothelin-1, bradykinin, and NaF interacted in an additive manner with either nucleotide in stimulating PI hydrolysis. Pretreatment with pertussis toxin did not affect ATP-, UTP-, and GTP-stimulated IP generation in these cells, indicating that nucleotide receptors coupled to PLC by a pertussis toxin-resistant G protein in both cell types. Short-term treatment of the cells with protein kinase C (PKC) activators [phorbol 12-myristate 13-acetate (PMA) and octylindolactam V] produced a dose-dependent inhibition of ATP- and UTP-induced IP formation with a greater extent and higher susceptibility in C6 glioma cells than in NG108-15 cells. Furthermore, a 24-h exposure of the cells to PMA resulted in an obvious attenuation of nucleotide-induced IP formation in C6 glioma cells but failed to change the response in NG108-15 cells. These results suggest that distinct nucleotide receptors that respond to ATP and UTP with different selectivity exist in NG108-15 and C6 glioma cells. These heterogeneous nucleotide receptors coupled to PLC undergo discriminative modulation by PKC. NG108-15 and NCB-20 neuroblastoma are two cell lines that showed the highest specificity to extracellular UTP rather than ATP among the nucleotide receptors so far studied in various cells, suggesting the presence of a pyrimidine receptor in these cells.  相似文献   

19.
Y Nomura  M Tohda 《FEBS letters》1987,216(1):40-44
Depolarized stimulation 1.5-fold increased Ca2+ influx which was inhibited by pretreatment with verapamil or LaCl3. Treatment with pertussis toxin, islet-activating protein (IAP), induced a reduction in 50 mM K+-induced Ca2+ influx and stimulated adenylate cyclase (AC) activity in NG108-15 cells. However, addition of dibutyryl cAMP or forskolin treatment elevating cAMP level exerted no effects on a depolarization-induced Ca2+ influx. Dissociated B-oligomer of IAP after treatment with dithiothreitol and ATP increased a depolarization-evoked Ca2+ influx. It is suggested that inhibitory GTP-binding protein (G1) or other IAP substrate proteins could directly be involved in Ca2+ influx via voltage-sensitive Ca2+ channel.  相似文献   

20.
Amounts of the guanine nucleotide binding regulatory proteins which are also pertussis toxin substrates (such as Ni and No) were measured in rat glioma, C6BU-1, cells and in neuroblastoma X glioma, NG108-15, hybrid cells. Measurements were performed both by quantitating pertussis toxin catalyzed ADP-ribosylation and by quantitative immunoblotting with affinity purified antibodies specific for Ni or No. The amounts of pertussis toxin substrate in C6 and NG108-15 cells are 7.5 and 0.6 pmol/mg membrane protein, respectively. These levels are minimum values and higher estimates of the total amounts of N proteins in the two cells are obtained by quantitative immunoblot analysis of the beta-subunit common to all N proteins. Immunoblots with specific antibodies show that NG108-15 cells contain 3.8 pmol/mg of No and detectable but small (less than 0.1 pmol/mg) amounts of Ni. In contrast, C6 cell membranes contain no detectable No and only 0.14 pmol/mg Ni. Thus, C6 cells contain large amounts of a pertussis toxin substrate which is neither Ni nor No.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号