首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polarity complex of PAR-3, PAR-6, and atypical protein kinase C (aPKC) functions in various cell polarization events. PAR-3 directly interacts with Tiam1/Taim2 (STEF), Rac1-specific guanine nucleotide exchange factors, and forms a complex with aPKC-PAR-6-Cdc42*GTP, leading to Rac1 activation. RhoA antagonizes Rac1 in certain types of cells. However, the relationship between RhoA and the PAR complex remains elusive. We found here that Rho-kinase/ROCK/ROK, the effector of RhoA, phosphorylated PAR-3 at Thr833 and thereby disrupted its interaction with aPKC and PAR-6, but not with Tiam2. Phosphorylated PAR-3 was observed in the leading edge, and in central and rear portions of migrating cells having front-rear polarity. Knockdown of PAR-3 by small interfering RNA (siRNA) impaired cell migration, front-rear polarization, and PAR-3-mediated Rac1 activation, which were recovered with siRNA-resistant PAR-3, but not with the phospho-mimic PAR-3 mutant. We propose that RhoA/Rho-kinase inhibits PAR complex formation through PAR-3 phosphorylation, resulting in Rac1 inactivation.  相似文献   

2.
Several studies suggest that RhoA and RhoC, despite their sequence similarity, have different roles in cell migration and invasion, but the molecular basis for this is not known. Using RNAi, we show that RhoA-depleted cells became elongated and extended multiple Rac1-driven narrow protrusions in 2D and 3D environments, leading to increased invasion. These phenotypes were caused by combined but distinct effects of the Rho-regulated kinases ROCK1 and ROCK2. Depletion of ROCK2 induced multiple delocalized protrusions and reduced migratory polarity, whereas ROCK1 depletion selectively led to cell elongation and defective tail retraction. In contrast, RhoC depletion increased cell spreading and induced Rac1 activation around the periphery in broad lamellipodia, thereby inhibiting directed migration and invasion. These effects of RhoC depletion are mediated by the formin FMNL3, which we identify as a new target of RhoC but not RhoA. We propose that RhoA contributes to migratory cell polarity through ROCK2-mediated suppression of Rac1 activity in lamellipodia, whereas RhoC promotes polarized migration through FMNL3 by restricting lamellipodial broadening.  相似文献   

3.
As previously shown, constitutive activation of the small GTPase Rho and its downstream target Rho-kinase is crucial for spontaneous migration of Walker carcinosarcoma cells. We now show that after treatment of cells with either the Rho inhibitor C3 exoenzyme or the Rho-kinase inhibitor Y-27632, constitutive myosin light chain (MLC) phosphorylation is significantly decreased, correlating with inhibition of cell polarization and migration. Transfection with a dominant-negative Rho-kinase mutant similarly inhibits cell polarization and MLC phosphorylation. Transfection with a dominant-active Rho-kinase mutant leads to significantly increased MLC phosphorylation, membrane blebbing, and inhibition of cell polarization. This Rho-kinase-induced membrane blebbing can be inhibited by Y-27632, ML-7, and blebbistatin. Unexpectedly, overactivation of RhoA has similar effects as its inhibition. Introduction of a bacterially expressed constitutively activated mutant protein (but not of wild-type RhoA) into the cells or transfection of cells with a constitutively active RhoA mutant both inhibit polarization and decrease MLC phosphorylation. Transfection of cells with constitutively active or dominant-negative Rac both abrogate polarity, and the latter inhibits MLC phosphorylation. Our findings suggest an important role of Rac, Rho/Rho-kinase, and MLCK in controlling myosin activity in Walker carcinosarcoma cells and show that an appropriate level of RhoA, Rac, and Rho-kinase activity is required to regulate cell polarity and migration.  相似文献   

4.
Exposure of neutrophils to chemoattractant induces cell polarization and migration. These behaviors require the asymmetric activation of distinct signaling pathways and cytoskeletal elements in the protruding pseudopod at the front of cells and the retracting uropod at the rear. An important outstanding question is, how does the organization of the plasma membrane participate in establishing asymmetry during polarization and migration? To answer this question, we investigated the function of cholesterol, a lipid known to influence membrane organization. Using controlled cholesterol depletion, we found that a cholesterol-dependent membrane organization enabled cell polarization and migration by promoting uropod function and suppressing ectopic pseudopod formation. At a mechanistic level, we showed that cholesterol was directly required for suppressing inappropriate activation of the pseudopod-promoting Gi/PI3-kinase signaling pathway. Furthermore, cholesterol was required for dampening Gi-dependent negative feedback on the RhoA signaling pathway, thus enabling RhoA activation and uropod function. Our findings suggest a model in which a cholesterol-dependent membrane organization plays an essential role in the establishment of cellular asymmetry by balancing the activation and segregating the localization of competing pseudopod- and uropod-inducing signaling pathways during neutrophil polarization and migration.  相似文献   

5.
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.  相似文献   

6.
Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells.  相似文献   

7.
We performed a proteomics screen for Rho isoform-specific binding proteins to clarify the tumor-promoting effects of RhoA and C that contrast with the tumor-suppressive effects of RhoB. We found that the IQ-motif-containing GTPase-activating protein IQGAP1 interacts directly with GTP-bound, prenylated RhoA and RhoC, but not with RhoB. Co-immunoprecipitation of IQGAP1 with endogenous RhoA/C was enhanced when RhoA/C were activated by epidermal growth factor (EGF) or transfection of a constitutively active guanine nucleotide exchange factor (GEF). Overexpression of IQGAP1 increased GTP-loading of RhoA/C, while siRNA-mediated depletion of IQGAP1 prevented endogenous RhoA/C activation by growth factors. IQGAP1 knockdown also reduced the amount of GTP bound to GTPase-deficient RhoA/C mutants, suggesting that IQGAP enhances Rho activation by GEF(s) or stabilizes Rho-GTP. IQGAP1 depletion in MDA-MB-231 breast cancer cells blocked EGF- and RhoA-induced stimulation of DNA synthesis. Infecting cells with adenovirus encoding constitutively active RhoAL63 and measuring absolute amounts of RhoA-GTP in infected cells demonstrated that the lack of RhoAL63-induced DNA synthesis in IQGAP1-depleted cells was not due to reduced GTP-bound RhoA. These data suggested that IQGAP1 functions downstream of RhoA. Overexpression of IQGAP1 in MDA-MB-231 cells increased DNA synthesis irrespective of siRNA-mediated RhoA knockdown. Breast cancer cell motility was increased by expressing a constitutively-active RhoCV14 mutant or overexpressing IQGAP1. EGF- or RhoC-induced migration required IQGAP1, but IQGAP1-stimulated migration independently of RhoC, placing IQGAP1 downstream of RhoC. We conclude that IQGAP1 acts both upstream of RhoA/C, regulating their activation state, and downstream of RhoA/C, mediating their effects on breast cancer cell proliferation and migration, respectively.  相似文献   

8.
Macrophage migration inhibitory factor (MIF) is expressed and secreted in response to mitogens and integrin-dependent cell adhesion. Once released, autocrine MIF promotes the activation of RhoA GTPase leading to cell cycle progression in rodent fibroblasts. We now report that small interfering RNA-mediated knockdown of MIF and MIF small molecule antagonism results in a greater than 90% loss of both the migratory and invasive potential of human lung adenocarcinoma cells. Correlating with these phenotypes is a substantial reduction in steady state as well as serum-induced effector binding activity of the Rho GTPase family member, Rac1, in MIF-deficient cells. Conversely, MIF overexpression by adenovirus in human lung adenocarcinoma cells induces a dramatic enhancement of cell migration, and co-expression of a dominant interfering mutant of Rac1 (Rac1(N17)) completely abrogates this effect. Finally, our results indicate that MIF depletion results in defective partitioning of Rac1 to caveolin-containing membrane microdomains, raising the possibility that MIF promotes Rac1 activity and subsequent tumor cell motility through lipid raft stabilization.  相似文献   

9.
When cells are migrating, caveolin-1, the principal protein component of caveolae, is excluded from the leading edge and polarized at the cell rear. The dynamic feature depends on a specific sequence motif that directs intracellular trafficking of the protein. Deletion mutation analysis revealed a putative polarization domain at the N terminus of caveolin-1, between amino acids 32-60. Alanine substitution identified a minimal sequence of 10 residues ((46)TKEIDLVNRD(55)) necessary for caveolin-1 rear polarization. Interestingly, deletion of amino acids 1-60 did not prevent the polarization of caveolin-1 in human umbilical vein endothelial cells or wild-type mouse embryonic fibroblasts because of an interaction of Cav(61-178) mutant with endogenous caveolin-1. Surprisingly, expression of the depolarization mutant in caveolin-1 null cells dramatically impeded caveolae formation. Furthermore, knockdown of caveolae formation by methyl-beta-cyclodextrin failed to prevent wild-type caveolin-1 rear polarization. Importantly, genetic depletion of caveolin-1 led to disoriented migration, which can be rescued by full-length caveolin-1 but not the depolarization mutant, indicating a role of caveolin-1 polarity in chemotaxis. Thus, we have identified a sequence motif that is essential for caveolin-1 rear polarization and caveolae formation.  相似文献   

10.
Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDia1 by RNA interference and found that mDia1 depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Apc and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.  相似文献   

11.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

12.
Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.  相似文献   

13.
Cyclin A2 plays a key role in cell cycle regulation. It is essential in embryonic cells and in the hematopoietic lineage yet dispensable in fibroblasts. In this paper, we demonstrate that Cyclin A2-depleted cells display a cortical distribution of actin filaments and increased migration. These defects are rescued by restoration of wild-type Cyclin A2, which directly interacts with RhoA, or by a Cyclin A2 mutant unable to associate with Cdk. In vitro, Cyclin A2 potentiates the exchange activity of a RhoA-specific guanine nucleotide exchange factor. Consistent with this, Cyclin A2 depletion enhances migration of fibroblasts and invasiveness of transformed cells via down-regulation of RhoA activity. Moreover, Cyclin A2 expression is lower in metastases relative to primary colon adenocarcinoma in matched human tumors. All together, these data show that Cyclin A2 negatively controls cell motility by promoting RhoA activation, thus demonstrating a novel Cyclin A2 function in cytoskeletal rearrangements and cell migration.  相似文献   

14.
The acquisition of spatial and functional asymmetry between the rear and the front of the cell is a necessary step for cell chemotaxis. Insulin-like growth factor-I (IGF-I) stimulation of the human adenocarcinoma MCF-7 induces a polarized phenotype characterized by asymmetrical CCR5 chemokine receptor redistribution to the leading cell edge. CCR5 associates with membrane raft microdomains, and its polarization parallels redistribution of raft molecules, including the raft-associated ganglioside GM1, glycosylphosphatidylinositol-anchored green fluorescent protein and ephrinB1, to the leading edge. The non-raft proteins transferrin receptor and a mutant ephrinB1 are distributed homogeneously in migrating MCF-7 cells, supporting the raft localization requirement for polarization. IGF-I stimulation of cholesterol-depleted cells induces projection of multiple pseudopodia over the entire cell periphery, indicating that raft disruption specifically affects the acquisition of cell polarity, but not IGF-I-induced protrusion activity. Cholesterol depletion inhibits MCF-7 chemotaxis, which is restored by replenishing cholesterol. Our results indicate that initial segregation between raft and non-raft membrane proteins mediates the necessary redistribution of specialized molecules for cell migration.  相似文献   

15.
Transendothelial migration of monocytes is the process by which monocytes leave the circulatory system and extravasate through the endothelial lining of the blood vessel wall and enter the underlying tissue. Transmigration requires coordination of alterations in cell shape and adhesive properties that are mediated by cytoskeletal dynamics. We have analyzed the function of RhoA in the cytoskeletal reorganizations that occur during transmigration. By loading monocytes with C3, an inhibitor of RhoA, we found that RhoA was required for transendothelial migration. We then examined individual steps of transmigration to explore the requirement for RhoA in extravasation. Our studies showed that RhoA was not required for monocyte attachment to the endothelium nor subsequent spreading of the monocyte on the endothelial surface. Time-lapse video microscopy analysis revealed that C3-loaded monocytes also had significant forward crawling movement on the endothelial monolayer and were able to invade between neighboring endothelial cells. However, RhoA was required to retract the tail of the migrating monocyte and complete diapedesis. We also demonstrate that p160ROCK, a serine/threonine kinase effector of RhoA, is both necessary and sufficient for RhoA-mediated tail retraction. Finally, we find that p160ROCK signaling negatively regulates integrin adhesions and that inhibition of RhoA results in an accumulation of beta2 integrin in the unretracted tails.  相似文献   

16.
The serine/threonine kinase PAK4 is a Cdc42 effector whose role is not well understood; overexpression of PAK4 has been associated with some cancers, and there are reports that correlate kinase level with increased cell migration in vitro. Here we report that PAK4 is primarily associated with cell-cell junctions in all the cell lines we tested, and fails to accumulate at focal adhesions or at the leading edge of migrating cells. In U2OS osteosarcoma and MCF-7 breast cancer cell lines, PAK4 depletion did not affect collective cell migration, but affected cell polarization. By contrast, Cdc42 depletion (as reported by many studies) caused a strong defect in junctional assembly in multiple cells lines. We also report that the depletion of PAK4 protein or treatment of cells with the PAK4 inhibitor PF-3758309 can lead to defects in centrosome reorientation (polarization) after cell monolayer wounding. These experiments are consistent with PAK4 forming part of a conserved cell-cell junctional polarity Cdc42 complex. We also confirm β-catenin as a target for PAK4 in these cells. Treatment of cells with PF-3758309 caused inhibition of β-catenin Ser-675 phosphorylation, which is located predominantly at cell-cell junctions.  相似文献   

17.
The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells.  相似文献   

18.
A tight control of the machineries regulating membrane bending and actin dynamics is very important for the generation of membrane protrusions, which are crucial for cell migration and invasion. Protein/protein and protein/phosphoinositides complexes assemble and disassemble to coordinate these mechanisms, the scaffold properties of the involved proteins playing a prominent role in this organization. The PI 5-phosphatase SHIP2 is a critical enzyme modulating PI(3,4,5)P3, PI(4,5)P2 and PI(3,4)P2 content in the cell. The scaffold properties of SHIP2 contribute to the specific targeting or retention of the protein in particular subcellular domains. Here, we identified IRSp53 as a new binding interactor of SHIP2 proline-rich domain. Both proteins are costained in HEK293T cells protrusions, upon transfection. We showed that the SH3-binding polyproline motif recognized by IRSp53 in SHIP2 is different from the regions targeted by other PRR binding partners i.e., CIN85, ITSN or even Mena a common interactor of both SHIP2 and IRSp53. We presented evidence that IRSp53 phosphorylation on S366 did not influence its interaction with SHIP2 and that Mena is not necessary for the association of SHIP2 with IRSp53 in MDA-MB-231 cells. The absence of Mena in MDA-MB-231 cells decreased the intracellular content in F-actin and modified the subcellular localization of SHIP2 and IRSp53 by increasing their relative content at the plasma membrane. Together our data suggest that SHIP2, through interaction with the cell protrusion regulators IRSp53 and Mena, participate to the formation of multi-protein complexes. This ensures the appropriate modulations of PIs which is important for regulation of membrane dynamics.  相似文献   

19.
Directed cell migration is crucial for development, but most of our current knowledge is derived from in vitro studies. We analyzed how neural crest (NC) cells migrate in the direction of their target during embryonic development. We show that the proteoglycan Syndecan-4 (Syn4) is expressed in the migrating neural crest of Xenopus and zebrafish embryos. Loss-of-function studies using an antisense morpholino against syn4 show that this molecule is required for NC migration, but not for NC induction. Inhibition of Syn4 does not affect the velocity of cell migration, but significantly reduces the directional migration of NC cells. Furthermore, we show that Syn4 and PCP signaling control the directional migration of NC cells by regulating the direction in which the cell protrusions are generated during migration. Finally, we perform FRET analysis of Cdc42, Rac and RhoA in vitro and in vivo after interfering with Syn4 and PCP signaling. This is the first time that FRET analysis of small GTPases has been performed in vivo. Our results show that Syn4 inhibits Rac activity, whereas PCP signaling promotes RhoA activity. In addition, we show that RhoA inhibits Rac in NC cells. We present a model in which Syn4 and PCP control directional NC migration by, at least in part, regulating membrane protrusions through the regulation of small GTPase activities.  相似文献   

20.
The sterile alpha motif (SAM) for protein-protein interactions is encountered in over 200 proteins, but the structural basis for its interactions is just becoming clear. Here we solved the structure of the?EphA2-SHIP2 SAM:SAM heterodimeric complex by use of NMR restraints from chemical shift perturbations, NOE and RDC experiments. Specific contacts between the protein surfaces differ significantly from a previous model and other SAM:SAM complexes. Molecular dynamics and docking simulations indicate fluctuations in the complex toward alternate, higher energy conformations. The interface suggests that EphA family members bind to SHIP2 SAM, whereas EphB members may not; correspondingly, we demonstrate binding of EphA1, but not of EphB2, to SHIP2. A variant of EphB2 SAM was designed that binds SHIP2. Functional characterization of a mutant EphA2 compromised in SHIP2 binding reveals two previously unrecognized functions of SHIP2 in suppressing ligand-induced activation of EphA2 and in promoting receptor coordinated chemotactic cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号