首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Electron transport components involved in H2 oxidation were studied in membranes from Rhizobium japonicum bacteroids. Hydrogen oxidation in membranes was inhibited by antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide with Ki values of 39.4 and 5.6 microM, respectively. The inhibition of H2 uptake by cyanide was triphasic with Ki values of 0.8, 9.9, and 93.6 microM. This result suggested that three cyanide-reactive components were involved in H2 oxidation. H2-reduced minus O2-oxidized absorption difference spectra showed peaks at 551.5 and 560 nm, indicating the involvement of c- and b-type cytochromes, respectively. This spectrum also revealed a trough at 455 nm, showing that H2 oxidation involves a flavoprotein. This flavoprotein was not reduced by H2 in the presence of cyanide. The inhibition of H2 or cytochrome c oxidation by the flavoprotein inhibitor Atebrin was monophasic; the Ki values were similar for both substrates. A role for the flavoprotein as a terminal oxidase was implicated based on its high redox potential and its sensitivity to cyanide. Cytochromes o and c-552 were identified based on their ability to bind carbon monoxide and cyanide.  相似文献   

2.
H_2还原减去O_2氧化的差示光谱显示424,522,552,560,603nm峰,鱼腾酮(反竞争性抑制),DBMIB,HQNO,抗霉素A,氰化钠和叠氮化钠(非竞争性抑制)明显抑制吸氢活性,表明细胞色素c,b和a分别参与氢氧化的电子传递。以Dixon作图来确定抑制剂在电子传递链中结合位点数目,鱼腾酮和DBMIB为单位点结合,HQNO和氰化物为双位点结合,HQNO所引起的部份抑制,可使对氰化钠敏感的结合位点消逝。鱼腾酮与HQNO同时存在时,其叠加或累积抑制效果表明,两种类型的细胞色素b参与氢氧化的电子传递,由H_2到O_2的电子传递于细胞色素b处分叉,对氰化物抑制敏感性也有所不同。  相似文献   

3.
Membranes from N2-fixing Azotobacter vinelandii were isolated to identify electron transport components involved in H2 oxidation. We found direct evidence for the involvement of cytochromes b, c, and d in H2 oxidation by the use of H2-reduced minus O2-oxidized absorption difference spectra. Carbon monoxide spectra showed that H2 reduced cytochrome d but not cytochrome o. Inhibition of H2 oxidation by cyanide was monophasic with a high Ki (135 microM); this was attributed to cytochrome d. Cyanide inhibition of malate oxidation showed the presence of an additional, low Ki (0.1 microM cyanide) component in the membranes; this was attributed to cytochrome o. However, H2 oxidation was not sensitive to this cyanide concentration. Chlorpromazine (at 160 microM) markedly inhibited malate oxidation, but it did not greatly inhibit H2 oxidation. Irradiation of membranes with UV light inhibited H2 oxidation. Adding A. vinelandii Q8 to the UV-damaged membranes partially restored H2 oxidation activity, whereas addition of UV-treated Q8 did not increase the activity. 2-n-Heptyl-4-hydroxyquinoline-N-oxide inhibited both H2 and malate oxidation.  相似文献   

4.
Mutant strains of Rhizobium japonicum constitutive for H2 uptake activity (Hupc) contained significantly more membrane-bound b-type cytochrome than did the wild type when grown heterotrophically. The Hupc strains contained approximately three times more dithionite- and NADH-reducible CO-reactive b-type cytochrome than did the wild type; the absorption features of the CO spectra were characteristic of cytochrome o. This component, designated cytochrome b', was not reduced by NADH in the presence of cyanide. Cytochrome o from the wild type (SR) and cytochrome b' from mutants SR476 and SR481 bound to CO with similar dissociation constants of 5.4, 7.4, and 5.6 microM, respectively. NADH-dependent reduction of cytochrome b' from SR476 and SR481 and the cytochrome o from SR followed pseudo-first-order kinetics with similar rate constants. Based on these spectral, ligand-binding, and kinetic measurements, it was concluded that cytochrome b' expressed by the Hupc mutants is equivalent to cytochrome o found in the wild type. H2, NADH, and succinate each reduced the same amount of total b-type cytochrome in membranes from SR481, and the rate of H2-dependent cytochrome o reduction was significantly less than with succinate or NADH as the reductants. It was concluded that neither cytochrome o nor any b-type cytochrome expressed by the Hupc mutants was unique to the H2 oxidation system. At low O2 concentrations, the inhibition of H2 and NADH oxidase activities by CO closely paralleled the binding of CO to cytochrome o rather than cytochromes a3 or c'. This suggested that NADH and H2 oxidation involved primarily cytochrome o as the terminal oxidase at low O2 tensions.  相似文献   

5.
The coupling of the quinoprotein glucose dehydrogenase to the electron transport chain has been investigated in Acinetobacter calcoaceticus. No evidence was obtained to support a previous suggestion that the soluble form of the dehydrogenase and the soluble cytochrome b associated with it are involved in the oxidation of glucose. Analysis of cytochrome content, and of reduction of cytochromes in membranes by substrates, and of sensitivity to cyanide indicated that glucose, succinate and NADH are all oxidized by way of the same b-type cytochrome(s) and cytochrome oxidases (cytochrome o and cytochrome d). Mixed inhibition studies [with KCN and hydroxyquinoline N-oxide (HQNO)] showed that the b-type cytochrome(s) formed a binary complex with the o-type oxidase and that there was thus no communication between the electron transport chains at the cytochrome level. Measurements of the reduction of ubiquinone-9 by glucose and NADH, and inhibitor studies using HQNO, indicated that the ubiquinone mediates electron transport from both the glucose and NADH dehydrogenases. In some conditions the quinone pool facilitated communication between the 'glucose oxidase' and 'NADH oxidase' electron transport chains, but in normal conditions these chains were kinetically distinct.  相似文献   

6.
The electron transport system of Neisseria gonorrhoeae was partially characterized by using spectrophotometric, spectroscopic, and oxygen consumption measurements. The effects of selected electron transport inhibitors (amytal, rotenone, 2-heptyl-4-hydroxyquinoline, antimycin A1, and potassium cyanide [KCN]) on electron transfer in whole-cell and sonically treated whole-cell preparations of N. gonorrhoeae were examined. The oxidation of reduced nicotinamide adenine dinucleotide, measured as a decrease in absorbance at 340 nm, was inhibited by each of the compounds tested. Oxygen consumption stimulated by reduced nicotinamide adenine dinucleotide was also inhibited, whereas oxygen uptake stimulated by succinate and malate was inhibited by KCN alone, suggesting the presence of a KCN-sensitive terminal oxidase. Room temperature optical difference spectra indicate an operational electron bypass around the amytal-rotenone-binding site. Difference spectra in the presence of 2-heptyl-4-hydroxyquinoline suggest a possible site of interaction of this compound at the substrate side of cytochrome b. Reduced-minus-oxidized spectra of ascorbate-tetramethyl-p-phenylenediamine suggest the participation of b-, a-, and d-type cytochromes in terminal oxidase activity. Hence, N. gonorrhoeae appears to have an electron transport chain containing cytochrome c, two b-type cytochromes (one of which has an oxidase function), and possibly a- and d-type cytochromes. An abbreviated chain exists through which succinate and malate can be oxidized directly by a KCN-sensitive component.  相似文献   

7.
C Auclair  E Cramer  J Hakim  P Boivin 《Biochimie》1976,58(11-12):1359-1366
Various factor affecting NADPH-oxidation by resting human leucocyte granules (LG) at acid pH, have been investigated. It was found that: 1) oxidation of NADPH by LG was increasingly inhibited by increased cyanide concentrations in the medium and was abolished by 4 mM cyanide. 2) with or without cyanide in the incubation medium, LG omitted, Mn++ in the presence of NADPH induced superoxide anion (O- WITH 2) production, as evidenced by oxygen consumption and H2O2 production, which were abolished (in the absence of cyanide) by cytochrome C (a potent O- with 2 scavenger). 3) Both NADPH oxidation in the presence of 2 mM cyanide (cyanide-resistant) and in its absence (cyanide-sensitive) by LG occurred only in the presence of Mn++, and both were inhibited by superoxide dismutase. 4) Cyanide-resistant NADPH oxidation by LG generated H2O2, was inhibited by H2O2 and was not modified by "active" catalase. The ratio of cyanide-resistant NADPH oxidation/O2 uptake was 1 up to 1.25 mM NADPH, and increased above this concentration. 5) Cyanide-sensitive NADPH oxidation was inhibited by catalase and increased upon addition of H2O2. The ratio of cyanide-sensitive NADPH oxidation/O2 uptake was 2. It was concluded that after initiation by O - with 2, produced independently of LG, two sequential types of LG dependent NADPH oxidations occur. First, an O - with 2-dependent protein mediated NADPH oxidation (cyanide-resistant) which generates H2O2 and O - with 2 occurs. Second, NADPH peroxidation (cyanide-sensitive) which utilizes H2O2 takes place.  相似文献   

8.
Cytochrome oxidation-reduction responses to two mitochondrial electron transport inhibitors, carbon monoxide (CO) and cyanide (CN), were studied in the intact brains of fluorocarbon-circulated rats. In vivo reflectance spectrophotometry indicated that cortical b-type cytochromes (564 nm) were highly resistant to reduction by CN in the presence of O2 but showed reduction responses to the administration of 1-5% CO in 90% O2. In contrast, cyanide-sensitive cytochromes aa3 (605 nm) and c + c1 (551 nm) did not increase their reduction levels during exposure to 5% CO in 90% O2. The in vivo CO-mediated b-cytochrome reduction responses did not occur after pretreatment with the cytochrome b inhibitor, antimycin A. Transmission spectrophotometry of superfused hemoglobin-free rat brain slices confirmed cortical b-type cytochromes to be CN-resistant in the presence of O2. Another cytochrome absorbing at 445 nm also was resistant to reduction by 1-mM cyanide in vitro, but it could be reduced anaerobically. The reduced 445-nm cytochrome bound CO in the presence of cyanide. We postulate that this CN-resistant CO binding component might account for in vivo cytochrome aa3-CO interactions and directly or indirectly modulate cytochrome b reduction responses to CO. In any event, the spectral data indicate different primary tissue target sites for CO and CN in living rat brain and also suggest different bioenergetic consequences of exposure to the two agents.  相似文献   

9.
In the presence of micromolar concentrations of H2O2, ferric cytochrome c oxidase forms a stable complex characterized by an increased absorption intensity at 606-607 nm with a weaker absorption band in the 560-580 nm region. Higher (millimolar) concentrations of H2O2 result in an enzyme exhibiting a Soret band at 427 nm and an alpha-band of increased intensity in the 589-610 nm region. Addition of H2O2 to ferric cytochrome c oxidase in the presence of cyanide results in absorbance increases at 444nm and 605nm. These changes are not seen if H2O2 is added to the cyanide complex of the ferric enzyme. The results support the idea that direct reaction of H2O2 with ferric cytochrome a 3 produces a 'peroxy' intermediate that is susceptible to further reduction by H2O2 at higher peroxide concentrations. Electron flow through cytochrome a is not involved, and the final product of the reaction is the so-called 'pulsed' or 'oxygenated' ferric form of the enzyme.  相似文献   

10.
Presence of three B-type cytochromes in swine cerebral microsomes   总被引:1,自引:0,他引:1  
In swine cerebral microsomes purified with sucrose density gradient and glycerol-cholate gradient centrifugations, it was observed that a new b-type cytochrome which had alpha-peak at 560 nm and Soret peak at 428 nm at 23 degrees C was reduced preferentially by anaerobic NADPH in the presence of cyanide. The b5-type cytochromes were reduced completely by both NADH and NADPH anaerobically. Three b-type cytochromes were partially purified into two b-type, spectroscopically distinct from each other, and the new b-type (b560-5) cytochromes.  相似文献   

11.
Two subcellular fraction, P-1 and P-2, were isolated by differential centrifugation from 0.25 M sucrose muscle homogenates of the parasitic roundworm, Ascaris lumbricoides suum. Morphological studies indicated that P-1 fraction consisted of intact mitochondria, whereas P-2 fraction consisted almost exclusively of vesicular components. The difference spectrum of Ascaris microsomes showed a characteristic b-type cytochrome spectrum with three distinct absorption peaks at 560, 525, and 424 nm. However, the alpha-peak at 560 nm was asymmetric with a shoulder at 555 nm. This microsomal b-type cytochrome was reduced by NADH, which was inhibited by rotenone and HgCl2. The reduced b-type cytochrome was easily reoxidized by shaking. NADH-oxidase activity observed in Ascaris microsomes was inhibited by rotenone, but not by KCN, NaN3, and antimycin A. On the other hand, NADH-cytochrome c and NADH-neotetrazolium (NT) reductase activities in Ascaris microsomes were not inhibited by antimycin A and rotenone, but were inhibited by HgCl2. Further observations indicated that neither HgCl2 nor rotenone inhibited Ascaris microsomal NADH-ferricyanide (FC) reductase activity, but rabbit antibody prepared against the purified NADH-FC reductase inhibited the NADH-cytochrome c reductase activity, the reduction of b-type cytochrome and the NADH-oxidase activity, as well as microsomal NADH-FC reductase activity.  相似文献   

12.
The oxidation of cytochromes during the reduction of N2O to N2 by a denitrifying bacterium was studied spectrophotometrically. The reduced b- and c-type cytochromes are partially oxidized when N2O is added to intact cells reduced with lactate under anaerobic conditions. The oxidation of cytochromes is inhibited non-competitively by azide, cyanide, 2,4-dinitrophenol and CuSO4, which inhibit the reduction of N2O to N2. In the presence of each inhibitor at a high concentration, at which the reduction of N2O to N2 is perfectly inhibited, cytochromes are not oxidized by N2O, while when an adequate, low concentration of inhibitor is added, b-type cytochrome is partially oxidized but c-type cytochrome is apparently not oxidized. In cell-free extracts, prepared by the sonic disruption of cells, that have entirely lost their activity in the reduction of N2O to N2, cytochromes are not oxidized by N2O. From the above results, it was concluded that b-type and c-type cytochromes should participate in the electron transport mechanism of the reduction of N2O to N2.  相似文献   

13.
A b-type cytochrome and NADH-ferricyanide (FC) reductase were solubilized from Ascaris muscle microsomes by detergents and purified by column chromatography. The purified b-type cytochrome displayed absorption bands at 560 (alpha-peak), 525 (beta-peak), and 424 nm (gamma-peak), with a marked shoulder at 555 nm in the reduced from, 415 nm (gamma-peak) in the oxidized form. This absorption spectrum was different from that of rat liver microsomal cytochrome b5. The molecular weight was estimated to be about 100,000 by SDS-polyacrylamide gel electrophoresis, and the absorption spectrum of alkaline pyridine ferrohemochrome suggested that the prosthetic group of this cytochrome is protoheme. The molecular weight of the purified NADH-FC reductase was estimated to be about 55,000 by SDS-polyacrylamide gel electrophoresis. The purified reductase required NADH as a specific electron donor. The reductase efficiently reduced some redox dyes with NADH, but the reduction of cytochrome c was much slower. The purified reductase, like the membrane-bound reductase, was not inhibited by thiol reagents.  相似文献   

14.
The highly thermophilic, hydrogen-oxidizing aerobic bacteria related to Hydrogenobacter possess a respiratory chain comprising a quinone and b-type (alpha band at 556 nm and 562 nm) and c-type (alpha band at 552 nm) cytochromes. They have no aa3-type cytochromes and their terminal oxidase is an o-type cytochrome. A polarographic method with an oxygen electrode was used for the measurement of the hydrogen-oxidizing activity. This activity was strongly inhibited by HQNO (2-N-heptyl-4-hydroxyquinoline N-oxide), an inhibitor of the respiratory chain in the quinone-cytochrome b region, and by KCN, an inhibitor of the terminal cytochrome oxidase. This study shows that the electrons released from hydrogen oxidation by the membrane-bound hydrogenase probably enter the respiratory chain at the level of the quinone-cytochrome b region.Abbreviations HQNO 2-N-heptyl-4-hydroxyquinoline N-oxide - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine - DW dry weight  相似文献   

15.
The iron-oxidizing activity of a moderately thermophilic iron-oxidizing bacterium, strain TI-1, was located in the plasma membrane. When the strain was grown in Fe2+ (60 mM)-salts medium containing yeast extract (0.03%), the plasma membrane had iron-oxidizing activity of 0.129 mumol O2 uptake/mg/min. Iron oxidase was solubilized from the plasma membrane with 1.0% n-octyl-beta-D-glucopyranoside (OGL) containing 25% (v/v) glycerol (pH 3.0) and purified 37-fold by a SP Sepharose FF column chromatography. Iron oxidase solubilized from the plasma membrane was stable at pH 3.0, but quite unstable in the buffer with the pH above 6.0 or below 1.0. The optimum pH and temperature for iron oxidation were 3.0 and 55 degrees C, respectively. Solubilized enzyme from the membrane showed absorption peaks characteristic of cytochromes a and b. Cyanide and azide, inhibitors of cytochrome c oxidase, completely inhibited iron-oxidizing activity at 100 microM, but antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) and myxothiazol, inhibitors of electron transport systems involved with cytochrome b, did not inhibit enzyme activity at 10 microM. The absorption spectrum of the most active enzyme fraction from SP Sepharose FF column chromatography (4.76 mumol O2 uptake/mg/min) compared with lower active fractions from the chromatography (0.009 and 2.10 mumol O2 uptake/mg/min) showed a large alpha-peak of cytochrome a at 602 nm and a smaller alpha-peak of cytochrome b at 560 nm. The absorption spectrum of pyridine ferrohemochrome prepared from the most highly purified enzyme showed an alpha-peak characteristic of heme a at 587 nm, but not the alpha-peak characteristic of heme c at 550 nm. The cytochrome a, but not cytochrome b, in the most highly purified enzyme fraction was reduced by the addition of ferrous iron at pH 3.0, indicating that electrons from Fe2+ were transported to cytochrome a, but not cytochrome b. These results strongly suggest that cytochrome a, but not cytochromes b and c, is involved in iron oxidation of strain TI-1.  相似文献   

16.
17.
L Kato  M Ishaque 《Cytobios》1975,12(45):31-43
Particles from Mycobacterium lepraemurium catalysed the oxidation of NADH with oxygen as the terminal electron acceptor. The preparations contained cytochromes of the a + a3'b and c types, as well as CO-binding pigments. The NADH oxidase activity was sensitive to inhibitors of the flavoprotein system as well as to HQNO and antimycin A. In addition, a cytochrome oxidase sensitive to cyanide was also present. The system was inhibited by the thiol-binding agent, PCMB, and thus indicated the involvement of sulphydryl group in the enzymatic oxidation of NADH. The sensitivity of the NADH oxidase system to all the inhibitors of the respiratory chain and the effect of these inhibitors on the absorption spectra suggested that cytochromes of the b, c, a + a3 types are involved in the transfer of electrons in NADH oxidation.  相似文献   

18.
Membranes of Klebsiella pneumoniae, grown anaerobically on citrate, contain a NADH oxidase activity that is activated specifically by Na+ or Li+ ions and effectively inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Cytochromes b and d were present in the membranes, and the steady state reduction level of cytochrome b increased on NaCl addition. Inverted bacterial membrane vesicles accumulated Na+ ions upon NADH oxidation. Na+ uptake was completely inhibited by monensin and by HQNO and slightly stimulated by carbonylcyanide-p-trifluoromethoxy phenylhydrazone (FCCP), thus indicating the operation of a primary Na+ pump. A Triton extract of the bacterial membranes did not catalyze NADH oxidation by O2, but by ferricyanide or menadione in a Na+-independent manner. The Na+-dependent NADH oxidation by O2 was restored by adding ubiquinone-1 in micromolar concentrations. After inhibition of the terminal oxidase with KCN, ubiquinol was formed from ubiquinone-1 and NADH. The reaction was stimulated about 6-fold by 10 mM NaCl and was severely inhibited by low amounts of HQNO. Superoxide radicals were formed during electron transfer from NADH to ubiquinone-1. These radicals disappeared by adding NaCl, but not with NaCl and HQNO. It is suggested that the superoxide radicals arise from semiquinone radicals which are formed by one electron reduction of quinone in a Na+-independent reaction sequence and then dismutate in a Na+ and HQNO sensitive reaction to quinone and quinol. The mechanism of the respiratory Na+ pump of K. pneumoniae appears to be quite similar to that of Vibrio alginolyticus.  相似文献   

19.
The oxidation-reduction midpoint potentials were determined for two b-type cytochromes, which had been solubilized from the membrane of Halobacterium halobium and partially purified. The two b-type cytochromes have oxidation-reduction midpoint potentials of 175 and 7 mV, respectively. These b-type cytochromes could also be resolved by difference absorption spectroscopy, which revealed one b-type cytochrome with absorption maximum (alpha-peak) at 558 nm, reducible by ascorbate-tetramethyl-p-phenylenediamine, and the other with absorption maximum (alpha-peak) at 560 nm, reducible by dithionite. Different substrates such as succinate, NADH, and alpha-glycerophosphate were used to study the b-type cytochromes in situ when bound to the membrane in a functional state. Reducing equivalents from succinate and alpha-glycerophosphate appear to enter the respiratory chain at the 175 mV b-type cytochrome. Cytochrome a3 is spectrophotometrically shown to be present in the membrane of H. halobium.  相似文献   

20.
Experiments employing electron transport inhibitors, room- and low-temperature spectroscopy, and photochemical action spectra have led to a model for the respiratory chain of Pseudomonas carboxydovorans. The chain is branched at the level of b-type cytochromes or ubiquinone. One branch (heterotrophic branch) contained cytochromes b558, c, and a1; the second branch (autotrophic branch) allowed growth in the presence of CO and contained cytochromes b561 and o (b563). Electrons from the oxidation of organic substrates were predominantly channelled into the heterotrophic branch, whereas electrons derived from the oxidation of CO or H2 could use both branches. Tetramethyl-p-phenylenediamine was oxidized via cytochromes c and a exclusively. The heterotrophic branch was sensitive to antimycin A, CO, and micromolar concentrations of cyanide. The autotrophic branch was sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide, insensitive to CO, and inhibited only by millimolar concentrations of cyanide. The functioning of cytochrome a1 as a terminal oxidase was established by photochemical action spectra. Reoxidation experiments established the functioning of cytochrome o as an alternative CO-insensitive terminal oxidase of the autotrophic branch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号