首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Molecular understanding of morphological agronomic traits is very important to improve grain yield and quality. According to the literature information summarized in Overview of Functionally Characterized Genes in Rice online database, 430 genes related to these traits have been functionally characterized in rice, while the functions of other genes remain to be elucidated. Gene indexed mutants are available for at least half of the genes identified in the rice genome, and are very useful resources to study gene function. To suggest candidate genes for functional studies associated with morphological agronomic traits, we identified genes with tissue/organ-preferred expression patterns through meta-analysis of microarray data, and identified 781 genes for roots, 1,084 for leaves, 1,029 for calluses, 927 for anthers, 241 for embryos, and 343 for endosperms. Additionally, 4,243 genes expressed in all tissue types were allocated to a ubiquitously-expressed gene group (‘housekeeping’ genes). The estimated tissue/organ-preferred and housekeeping genes accounted for 40% of the characterized genes associated with morphological agronomic traits, indicating that identification of tissue/organ-preferred genes is an effective way to provide putative gene function. In this study, we reported the information of gene-indexed mutants for 84% of the identified candidate genes. Our candidate genes and relating indexed mutant resources can potentially be used to improve morphological agronomic traits in rice.  相似文献   

3.
4.
《Genomics》2021,113(3):1396-1406
Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.  相似文献   

5.
One of the most promising New Plant Breeding Techniques is genome editing (also called gene editing) with the help of a programmable site-directed nuclease (SDN). In this review, we focus on SDN-1, which is the generation of small deletions or insertions (indels) at a precisely defined location in the genome with zinc finger nucleases (ZFN), TALENs, or CRISPR-Cas9. The programmable nuclease is used to induce a double-strand break in the DNA, while the repair is left to the plant cell itself, and mistakes are introduced, while the cell is repairing the double-strand break using the relatively error-prone NHEJ pathway. From a biological point of view, it could be considered as a form of targeted mutagenesis. We first discuss improvements and new technical variants for SDN-1, in particular employing CRISPR-Cas, and subsequently explore the effectiveness of targeted deletions that eliminate the function of a gene, as an approach to generate novel traits useful for improving agricultural sustainability, including disease resistances. We compare them with examples of deletions that resulted in novel functionality as known from crop domestication and classical mutation breeding (both using radiation and chemical mutagens). Finally, we touch upon regulatory and access and benefit sharing issues regarding the plants produced.  相似文献   

6.
Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.  相似文献   

7.
14-3-3 proteins in plant brassinosteroid signaling   总被引:1,自引:0,他引:1  
  相似文献   

8.
Streptococcus canis Cas9 (ScCas9) is an RNA-guided endonuclease with NNG protospacer adjacent motif (PAM) specificity whose genome-editing activity in rice is locus-dependent. Here we investigated the performance of a ScCas9 variant named Sc++ at different NNG PAM sites in the rice genome; Sc++ harbors a T1227K mutation and the substitution of a positively charged loop (residues 367–376). Sc++ nuclease achieved broader genome editing compared to the original ScCas9, and its nickase improved targeted base editing in transgenic rice plants. Using the high-efficiency adenine base editor rBE73b, we generated many new OsGS1 alleles suitable for screening of rice germplasm for potential herbicide resistance in the future. The CRISPR/Sc++ system expands the genome-editing toolkit for rice.  相似文献   

9.
10.
Because environmental stress can reduce crop growth and yield, the identification of genes that enhance agronomic traits is increasingly important. Previous screening of full-length cDNA overexpressing (FOX) rice lines revealed that OsTIFY11b, one of 20 TIFY proteins in rice, affects plant size, grain weight, and grain size. Therefore, we analyzed the effect of OsTIFY11b and nine other TIFY genes on the growth and yield of corresponding TIFY-FOX lines. Regardless of temperature, grain weight and culm length were enhanced in lines overexpressing TIFY11 subfamily genes, except OsTIFY11e. The TIFY-FOX plants exhibited increased floret number and reduced days to flowering, as well as reduced spikelet fertility, and OsTIFY10b, in particular, enhanced grain yield by minimizing decreases in fertility. We suggest that the enhanced growth of TIFY-transgenic rice is related to regulation of the jasmonate signaling pathway, as in Arabidopsis. Moreover, we discuss the potential application of TIFY overexpression for improving crop yield.  相似文献   

11.
Rice (Oryza sativa) is one of the most important staple foods for more than half of the global population. Many rice traits are quantitative, complex and controlled by multiple interacting genes. Thus, a full understanding of genetic relationships will be critical to systematically identify genes controlling agronomic traits. We developed a genome‐wide rice protein–protein interaction network (RicePPINet, http://netbio.sjtu.edu.cn/riceppinet ) using machine learning with structural relationship and functional information. RicePPINet contained 708 819 predicted interactions for 16 895 non‐transposable element related proteins. The power of the network for discovering novel protein interactions was demonstrated through comparison with other publicly available protein–protein interaction (PPI) prediction methods, and by experimentally determined PPI data sets. Furthermore, global analysis of domain‐mediated interactions revealed RicePPINet accurately reflects PPIs at the domain level. Our studies showed the efficiency of the RicePPINet‐based method in prioritizing candidate genes involved in complex agronomic traits, such as disease resistance and drought tolerance, was approximately 2–11 times better than random prediction. RicePPINet provides an expanded landscape of computational interactome for the genetic dissection of agronomically important traits in rice.  相似文献   

12.
13.
14.
15.
With the widespread use of clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) technologies in plants, large-scale genome editing is increasingly needed. Here, we developed a geminivirus-mediated surrogate system, called Wheat Dwarf Virus-Gate (WDV-surrogate), to facilitate high-throughput genome editing. WDV-Gate has two parts: one is the recipient callus from a transgenic rice line expressing Cas9 and a mutated hygromycin-resistant gene (HygM) for surrogate selection; the other is a WDV-based construct expressing two single guide RNAs (sgRNAs) targeting HygM and a gene of interest, respectively. We evaluated WDV-Gate on six rice loci by producing a total of 874 T0 plants. Compared with the conventional method, the WDV-Gate system, which was characterized by a transient and high level of sgRNA expression, significantly increased editing frequency (66.8% vs. 90.1%), plantlet regeneration efficiency (2.31-fold increase), and numbers of homozygous-edited plants (36.3% vs. 70.7%). Large-scale editing using pooled sgRNAs targeting the SLR1 gene resulted in a high editing frequency of 94.4%, further demonstrating its feasibility. We also tested WDV-Gate on sequence knock-in for protein tagging. By co-delivering a chemically modified donor DNA with the WDV-Gate plasmid, 3xFLAG peptides were successfully fused to three loci with an efficiency of up to 13%. Thus, by combining transiently expressed sgRNAs and a surrogate selection system, WDV-Gate could be useful for high-throughput gene knock-out and sequence knock-in.  相似文献   

16.
17.
Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice   总被引:1,自引:0,他引:1  
正Dear Editor,The CRISPR-Cas9(clustered regularly interspaced short palindromic repeats/Cas9)system has been widely used for a variety of applications,including targeted gene knockout,gene insertion,gene replacement and base editing.Despite its wide use,the genome editing using CRISPR-Cas9 is performed almost exclusively at sites containing canonical NGG protospacer adjacent motifs(PAMs).To overcome the PAM constraint of the CRISPR-Cas9 system,many attempts have been made to develop various Cas9 orthologs and  相似文献   

18.
19.
《Seminars in Virology》1995,6(2):133-139
Rice dwarf phytoreovirus (RDV), and rice ragged stunt oryzairus (RRSV) genes were introduced into rice protoplasts by using the cauliflower mosaic virus 35S promoter, tissue culture techniques and electroporation. The translation products of cDNA to RDV segment 8 were detected in transformed rice. Plants transgenic for RRSV S9 also expressed an mRNA of appropriate size but the protein was not apparently expressed. These latter plants did not show any resistance when inoculated with RRSV; on the contrary, symptom expression was intensified. Since most plant reoviruses are phloem-limited, an alternative promoter could be that of rice tungro bacilliform virus (RTBV), which is itself phloem-limited. When the β-glucuronidase (GUS) gene was coupled to this promoter and introduced into rice, GUS activity was successfully expressed only in the phloem, so the system could be of interest in the reovirus context.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号