首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
SYNOPSIS. The 16S ribosomal RNA of the chloroplast of Euglena gracilis strain Z has been characterized in terms of its 2-dimensional electrophoretic “fingerprint” (T1 ribonuclease). Over 100 spots were resolved on the “fingerprint” and each spot was characterized as to which RNA oligonucleotide fragment(s) it contained. When compared to similar analyses of prokaryotic 16S rRNAs and eukaryotic cytoplasmic 18S rRNAs, the chloroplast 16S rRNA was a typically prokaryotic RNA, but bore little if any relationship to eukaryotic 18S rRNAs. Therefore, the cistrons for chloroplast 16S rRNA are related to the equivalent prokaryotic cistrons, but, apparently, are not related to the equivalent eukaryotic cistrons. Among the organisms available for comparison, the Euglena chloroplast 16S rRNA appears most closely related to the 16S rRNA of the eukaryote, Porphyridium cruentum (a red alga), and at least distantly related to the 16S rRNAs of the blue-green algae and perhaps also to the bacilli.  相似文献   

2.
RbfA, a 30S ribosome-binding factor, is a multicopy suppressor of a cold-sensitive C23U mutation of the 16S rRNA and is required for efficient processing of the 16S rRNA. At 37 degrees C, DeltarbfA cells show accumulation of ribosomal subunits and 16S rRNA precursor with a significantly reduced polysome profile in comparison with wild-type cells. RbfA is also a cold-shock protein essential for Escherichia coli cells to adapt to low temperature. In this study, we examined its association with the ribosome and its role in 16S rRNA processing and ribosome profiles at low temperature. In wild-type cells, following cold shock at 15 degrees C, the amount of free RbfA remained largely stable, while that of its 30S subunit-associated form became several times greater than that at 37 degrees C and a larger fraction of total 30S subunits was detected to be RbfA-containing. In DeltarbfA cells, the pre-16S rRNA amount increased after cold shock with a concomitant reduction of the mature 16S rRNA amount and the formation of polysomes was further reduced. A closer examination revealed that 30S ribosomal subunits of DeltarbfA cells at low temperature contained primarily pre-16S rRNA and little mature 16S rRNA. Our results indicate that the cold sensitivity of DeltarbfA cells is directly related to their lack of translation initiation-capable 30S subunits containing mature 16S rRNA at low temperature. Importantly, when the C-terminal 25 residue sequence was deleted, the resulting RbfADelta25 lost the abilities to stably associate with the 30S subunit and to suppress the dominant-negative, cold-sensitive phenotype of the C23U mutation in 16S rRNA but was able to suppress the 16S rRNA processing defect and the cold-sensitive phenotype of the DeltarbfA cells, suggesting that RbfA may interact with the 30S ribosome at more than one site or function in more than one fashion in assisting the 16S rRNA maturation at low temperature.  相似文献   

3.
4.
5.
【背景】16S rRNA基因序列分析已广泛应用于细菌的分类鉴定,但是存在一定局限性,而使用看家基因作为分子标记在近缘种及亚种间的系统发育分析中具有其独特的优势。【目的】研究16S rRNA、uvr C (核酸外切酶ABC,C亚基)和mur E (UDP-N-乙酰胞壁酰三肽合酶)基因序列对干酪乳杆菌的近缘种及亚种的区分能力。【方法】采用分离自传统发酵乳中的6株干酪乳杆菌为研究对象,选取uvr C和mur E基因片段,通过PCR扩增、测序,结合已公布的干酪乳杆菌的近缘种或亚种的相应序列计算遗传距离、构建系统发育树,并与16S rRNA基因序列分析技术进行比较。【结果】研究发现Lactobacilluscasei及相近种间的uvr C、mur E和联合基因(uvr C-mur E)构建的系统发育树拓扑结构与16S rRNA基因结果基本一致,区别在于相似性的不同,其分别为79.00%-99.16%、89.08%-99.20%、76.56%-99.69%和99.58%-100%。基于16S rRNA基因不能区分干酪乳杆菌的近缘种及亚种,而看家基因uvr C和mur E基因序列能够很好地区分干酪乳杆菌的近缘种及亚种,并且将uvr C和mur E基因串联使用后,试验菌株与参考菌株的分类关系更加清晰。【结论】联合基因(uvr C-mur E)可作为16SrRNA基因的辅助工具用于干酪乳杆菌的近缘种及亚种的快速准确鉴定。  相似文献   

6.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

7.
The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.  相似文献   

8.
In order to study microbial diversity in a polycyclic aromatic hydrocarbon-impacted soil, 14 bacterial strains were analyzed by 16S rRNA gene sequencing and amplified fragment length polymorphism (AFLP) analysis. Bacterial strains isolated from two different hydrocarbon-polluted sites were identified to the species level by 16S rRNA full-gene sequencing using MicroSeq 16S rRNA gene sequencing. Their genome was subsequently analyzed by high-resolution genotyping with AFLP analysis, in order to monitor species variability and to differentiate closely related strains. Cluster analysis based on AFLP fingerprinting showed intra-specific polymorphism, even among strains with 100% 16S rRNA gene sequence identity. The results show that AFLP is a powerful, highly reproducible and discriminatory tool for revealing genetic relationships in bacterial populations. The ability to differentiate and track related closely microbes is fundamental for studying structure and dynamics of microbial communities in contaminated ecosystems.  相似文献   

9.
Phormium yellow leaf (PYL) phytoplasma causes a lethal disease of the monocotyledon, New Zealand flax (Phormium tenax). The 16S rRNA genes of PYL phytoplasma were amplified from infected flax by PCR and cloned, and the nucleotide sequences were determined. DNA sequencing and Southern hybridization analysis of genomic DNA indicated the presence of two copies of the 16S rRNA gene. The two 16S rRNA genes exhibited sequence heterogeneity in 4 nucleotide positions and could be distinguished by the restriction enzymes BpmI and BsrI. This is the first record in which sequence heterogeneity in the 16S rRNA genes of a phytoplasma has been determined by sequence analysis. A phylogenetic tree based on 16S rRNA gene sequences showed that PYL phytoplasma is most closely related to the stolbur and German grapevine yellows phytoplasmas, which form the stolbur subgroup of the aster yellows group. This phylogenetic position of PYL phytoplasma was supported by 16S/23S spacer region sequence data.  相似文献   

10.
11.
16S rRNA molecules in a microbial strain can differ due to nucleotide variation between their genes. This is a typical trait of fast-growing bacteria to cope with different niches. We investigated characteristics of 16S rRNA genes in Vibrio splendidus strain PB1-10, from the normal flora of Atlantic halibut. Sequencing of 16S rRNA gene clones detected 35 variable positions in a total of 13 different gene copies. More than two-thirds of the substitutions occurred in regions corresponding to helix H6 and helix H17 of the 16S rRNA molecule. Possible recombination between these helixes in related bacteria ( Vibrio, Photobacterium, Colwellia ) from similar environments impacts 16S rRNA-based phylogeny of V. splendidus . We argue that these nonrandom modifications are maintained to provide a fine-tuning of the ribosome function to optimize translation machinery performance and ultimately bacterial niche fitness.  相似文献   

12.
Diversity of 42 isolates from effective nodules of Pisum sativum in different geographical regions of China were studied using 16S rRNA gene RFLP patterns, 16S rRNA sequencing, 16S–23S rRNA inter-genic spacer (IGS) region RFLP patterns and G-C rich random amplified polymorphic DNA (RAPD). The isolates were distributed in two groups on the basis of their 16S rRNA gene RFLP patterns. The 16S rRNA gene sequences of strains from 16S rRNA gene RFLP patterns group I were very closely related (identities higher than 99.5%) to Rhizobium leguminosarum USDA 2370. Group II consisting of WzP3 and WzP15 was closely related to Rhizobium etli CFN42. The analysis of the 16S–23S IGS RFLP pat-terns divided the isolates into 18 genotypes and four groups. Group I was clustered with R. legumino-sarum USDA2370. Group II consisted of YcP2, YcP3 and CqP7. The strains of group III were distributed abroad. Group IV consisted of WzP3, WzP15 and R. etli CFN42. RAPD divided the isolates into nine clusters in which group IV only consisted of YcP2 and the strains of group V and IX were from Wenzhou and Xiantao, respectively. This assay demonstrated the geographical effect on genetic diversity of pea rhizobia.  相似文献   

13.
14.
A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.  相似文献   

15.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

16.
M Dron  M Rahire    J D Rochaix 《Nucleic acids research》1982,10(23):7609-7620
The sequence of a 2 kb DNA fragment containing the chloroplast 16S ribosomal RNA gene from Chlamydomonas reinhardii and its flanking regions has been determined. The algal 16S rRNA sequence (1475 nucleotides) and secondary structure are highly related to those found in bacteria and in the chloroplasts of higher plants. In contrast, the flanking regions are very different. In C. reinhardii the 16S rRNA gene is surrounded by AT rich segments of about 180 bases, which are followed by a long stretch of complementary bases separated from each other by 1833 nucleotides. It is likely that these structures play an important role in the folding and processing of the precursor of 16S rRNA. The primary and secondary structures of the binding sites of two ribosomal proteins in the 16SrRNAs of E. coli and C. reinhardii are considerably related.  相似文献   

17.
A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.  相似文献   

18.
Abstract: A total of 155 16S rRNA genes that were cloned from unattached and attached bacteria in nine boreholes down to 626 m below ground were partially sequenced. Attached bacteria were examined with scanning electron microscopy (SEM). The distribution of the 16S rRNA genes found was related to the different types of groundwaters studied. Several of the sequences obtained could be identified on genus level as one of the genera Acinetobacter, Bacillus, Desulfovibrio or Thiomicrospira . The 16S rRNA genes from 20 selected isolates were closely related to the sulphate reducers Desulfomicrobium baculatum or Desulfovibrio sp., the iron reducer Shewanella putrefaciens , or distantly related to the Gram-positive genus Eubacterium . Viable counts confirmed the presence of sulphate-reducing bacteria.  相似文献   

19.
Fifty-nine bacterial isolates from root nodules of the woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the central and eastern regions of China were characterized with phenotypic analysis, PCR-based 16S and 23S rRNA gene RFLP, Box PCR and 16S rRNA gene sequencing. Seven main phena were defined in numerical taxonomy, which corresponded to distinct groups within the genera Agrobacterium, Bradyrhizobium, Mesorhizobium and Rhizobium in 16S and 23S rRNA gene PCR-RFLP. The phylogenetic relationships of the 16S rRNA genes supported the grouping results of PCR-RFLP. Most of the isolates from Amorpha fruticosa were classified into two groups closely related to Mesorhizobium amorphae. Seventeen of the 21 isolates from Wisteria sinensis were identified as two groups related to Rhizobium and Agrobacterium. Six out of 10 isolates from Cercis racemosa were identified as a group related to Bradyrhizobium. Our results indicated that each of the investigated legumes nodulated mainly with one or two rhizobial groups, although isolates from different plants intermingled in some small bacterial groups. In addition, correlation between geographic origin and grouping results was found in the isolates from Amorpha fruticosa. These results revealed that the symbiotic bacteria might have been selected by both the legume hosts and the geographic factors.  相似文献   

20.
AIMS: To identify Bacillus species and related genera by fingerprinting based on ribosomal RNA gene restriction patterns; to compare ribosomal RNA gene restriction patterns-based phylogenetic trees with trees based on 16S rRNA gene sequences; to evaluate the usefulness of ribosomal RNA gene restriction patterns as a taxonomic tool for the classification of Bacillus species and related genera. METHODS AND RESULTS: Seventy-eight bacterial species which include 42 Bacillus species, 31 species from five newly created Bacillus-related genera, and five species from five phenotypically related genera were tested. A total of 77 distinct 16S rRNA gene hybridization banding patterns were obtained. The dendrogram resulting from UPGMA analysis showed three distinct main genetic clusters at the 75% banding pattern similarity. A total of 77 distinct 23S and 5S rRNA genes hybridization banding patterns were obtained, and the dendrogram showed four distinct genetic clusters at the 75% banding pattern similarity. A third dendrogram was constructed using a combination of the data from the 16S rRNA gene fingerprinting and the 23S and 5S rRNA genes fingerprinting. It revealed three distinct main phylogenetic clusters at the 75% banding pattern similarity. CONCLUSIONS: The Bacillus species along with the species from related genera were identified successfully and differentiated by ribosomal RNA gene restriction patterns, and most were distributed with no apparent order in various clusters on each of the three dendrograms. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data indicate that ribosomal RNA gene restriction patterns can be used to reconstruct the phylogeny of the Bacillus species and derived-genera that approximates, but does not duplicate, phylogenies based on 16S rRNA gene sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号