首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Nitella-based in vitro motility assay developed by Sheetz and Spudich (Sheetz, M.P., and Spudich, J. A. (1983) Nature 303, 31-35) is a quantitative assay for measuring the velocity of myosin-coated beads over an organized substratum of actin. We have used this assay to analyze the effect of phosphorylation of various sites on the 20,000-Da light chain of smooth muscle and cytoplasmic myosins. Phosphorylation by myosin light chain kinase at serine 19 on the 20,000-Da light chain subunit of smooth muscle myosin from turkey gizzard, bovine trachea and aorta, and of cytoplasmic myosin from human platelets was required for bead movement. The individual phosphorylated myosin-coated beads moved at characteristic rates under the same conditions (turkey gizzard myosin, 0.2 micron/s; aorta or trachea myosin, 0.12 micron/s; and platelet myosin, 0.04 micron/s; in contrast, rabbit skeletal muscle myosin, 2 micron/s). Myosin light chain kinase can also phosphorylate threonine 18 in addition to serine 19, and this phosphorylation resulted in an increase in the actin-activated MgATPase activity (Ikebe, M., and Hartshorne, D.J. (1985) J. Biol. Chem. 260, 10027-10031). Phosphorylation at this site had no effect on the velocity of smooth muscle myosin-coated beads. Protein kinase C (Ca2+/phospholipid-dependent enzyme) can also phosphorylate two to three sites on the 20,000-Da light chain, and this phosphorylation alone did not result in the movement of myosin-coated beads. When myosin that had been previously phosphorylated by myosin light chain kinase at serine 19 was also phosphorylated by protein kinase C, myosin-coated beads moved at the same velocity as beads coated with myosin phosphorylated by myosin light chain kinase alone. Tropomyosin binding to actin also had an activating effect on the actin-activated MgATPase activity through an effect on the Vmax and also resulted in an increase in the velocity of myosin-coated beads.  相似文献   

2.
《The Journal of cell biology》1989,109(4):1549-1560
The two classes of light chains in vertebrate fast muscle myosin have been selectively labeled with the thiol specific reagent 5- (iodoacetamido) fluorescein to determine their location in the myosin head. The alkali light chains (A1 and A2) were labeled at a single cysteine residue near the COOH terminus, whereas the regulatory light chain (LC2) was reacted at either cysteine 125 or 154. The two cysteines of LC2 appear to be near each other in the tertiary structure as evidenced by the ease of formation of an intramolecular disulfide bond. Besides having favorable spectral properties, fluorescein is a potent haptenic immunogen for raising high affinity antibodies. When anti-fluorescyl antibodies were added to the fluorescein-labeled light chains, the fluorescence was quenched by greater than 90%, thereby providing a simple method for determining an association constant. The interaction with antibody was the same for light chains exchanged into myosin as for free light chains. Complexes of antibody bound to light chain could be visualized in the electron microscope by rotary shadowing with platinum. By this approach we have shown that the COOH- terminal regions of the two classes of light chains are widely separated in myosin: the cysteine residues of LC2 lie close to the head/rod junction, whereas the single cysteine of A1 or A2 is located approximately 90 A distal to the junction. These sites correspond to the positions of the NH2 termini of the light chains mapped in earlier studies (Winkelmann, D. A., and S. Lowey. 1986. J. Mol. Biol. 188:595- 612; Tokunaga, M., M. Suzuki, K. Saeki, and T. Wakabayashi. 1987b. J. Mol. Biol. 194:245-255). We conclude that the two classes of light chains do not lie in a simple colinear arrangement, but instead have a more complex organization in distinct regions of the myosin head.  相似文献   

3.
Severin is a protein from Dictyostelium that severs actin filaments in a Ca2+-dependent manner and remains bound to the filament fragments (Brown, S. S., K. Yamamoto, and J. A. Spudich , 1982, J. Cell Biol., 93:205-210; Yamamoto, K., J. D. Pardee , J. Reidler , L. Stryer , and J. A. Spudich , 1982, J. Cell Biol. 95:711-719). Further characterization of the interaction of severin with actin suggests that it remains bound to the preferred assembly end of the fragmented actin filaments. Addition of severin in molar excess to actin causes total disassembly of the filaments and the formation of a high-affinity complex containing one severin and one actin. This severin -actin complex does not sever actin filaments. The binding of severin to actin, measured directly by fluorescence energy transfer, requires micromolar Ca2+, as does the severing and depolymerizing activity reported previously. Once bound to actin in the presence of greater than 1 microM Ca2+, severin is not released from the actin when the Ca2+ is lowered to less than 0.1 microM by addition of EGTA. Tropomyosin, DNase I, phalloidin, and cytochalasin B have no effect on the ability of severin to bind to or sever actin filaments. Subfragment 1 of myosin, however, significantly inhibits severin activity. Severin binds not only to actin filaments, but also directly to G-actin, as well as to other conformational species of actin.  相似文献   

4.
We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement.  相似文献   

5.
Crystal structures of the myosin motor domain in the presence of different nucleotides show the lever arm domain in two basic angular states, postulated to represent prestroke and poststroke states, respectively (Rayment, I. (1996) J. Biol. Chem. 271, 15850-15853; Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C. (1998) Cell 94, 559-571). Contact is maintained between two domains, the relay and the converter, in both of these angular states. Therefore it has been proposed by Dominguez et al. (cited above) that this contact is critical for mechanically driving the angular change of the lever arm domain. However, structural information is lacking on whether this contact is maintained throughout the actin-activated myosin ATPase cycle. To test the functional importance of this interdomain contact, we introduced cysteines into the sequence of a "cysteine-light" myosin motor at position 499 on the lower cleft and position 738 on the converter domain (Shih, W. M., Gryczynski, Z., Lakowicz, J. L., and Spudich, J. A. (2000) Cell 102, 683-694). Disulfide cross-linking could be induced. The cross-link had minimal effects on actin binding, ATP-induced actin release, and actin-activated ATPase. These results demonstrate that the relay/converter interface remains intact in the actin strongly bound state of myosin and throughout the entire actin-activated myosin ATPase cycle.  相似文献   

6.
Antibody against cytoplasmic myosin, when microinjected into actively dividing cells, provides a physiological test for the role of actin and myosin in chromosome movement. Anti-Asterias egg myosin, characterized by Mabuchi and Okuno (1977, J. Cell Biol., 74:251), completely and specifically inhibits the actin activated Mg++ -ATPase of myosin in vitro and, when microinjected, inhibits cytokinesis in vivo. Here, we demonstrate that microinjected antibody has no observable effect on the rate or extent of anaphase chromosome movements. Neither central spindle elongation nor chromosomal fiber shortening is affected by doses up to eightfold higher than those require to uniformly inhibit cytokinesis in all injected cells. We calculate that such doses are sufficient to completely inhibit myosin ATPase activity in these cells. Cells injected with buffer alone, with myosin-absorbed antibody, or with nonimmune gamma-globulin, proceed normally through both mitosis and cytokinesis. Control gamma-globulin, labeled with fluorescein, diffuses to homogeneity throughout the cytoplasm in 2-4 min and remains uniformly distributed. Antibody is not excluded from the spindle region. Prometaphase chromosome movements, fertilization, pronuclear migration, and pronuclear fusion are also unaffected by microinjected antimyosin. These experiments demonstrate that antimyosin blocks the actomyosin interaction thought to be responsible for force production in cytokinesis but has no effect on mitotic or meiotic chromosome motion. They provide direct physiological evidence that myosin is not involved in force production for chromosome movement.  相似文献   

7.
The NH2- and COOH-terminal regions of the regulatory light chain (LC2) have been mapped to the head/rod junction by immunoelectron microscopy, using monoclonal and anti-fluorescyl antibodies as probes. In order to map the entire length of the light chain, we have engineered and purified mutants that contain a single cysteine residue at positions 2, 73, 94, 126, or 155. The single cysteine residues were labeled with either 5-iodoacetamido fluorescein or N-ethylmaleimide-biotin. We observed that the reactivity of Cys126 is far greater than that of Cys155, confirming that cysteine 126 is the fast-reacting thiol in wild-type light chain. The labeled light chains were exchanged into myosin stripped of its native LC2 by immunoaffinity chromatography, and the reconstituted myosin was reacted with anti-fluorescein antibody or avidin prior to rotary shadowing for electron microscopy. The position of the antibody or avidin was found to be near the head/rod junction for all mutants. These mapping studies, together with our finding that cysteines widely separated in the primary sequence can form multiple disulfide bonds (Saraswat, L.D., and Lowey, S. (1991) J. Biol. Chem. 226, 19777-19785), support a model for LC2 as a flexible, globular molecule localized mainly in the vicinity of the head/rod junction of myosin.  相似文献   

8.
Ten monoclonal antibodies (My1-10) against Dictyostelium discoideum myosin were prepared and characterized. Nine bound to the 210-kD heavy chain and one (My8) bound to the 18-kD light chain. They defined six topographically distinct antigenic sites of the heavy chain. Five binding sites (the My1, My5, My10 site, and the My2, My3, My4, and My9 sites) are located on the rod portion of the myosin molecule. The position of the sixth site (the My6 and My7 site) is less certain, but it appears to be near the junction of the globular heads and the rod. Three of the antibodies (My2, My3, and My6) bound to myosin filaments in solution and could be sedimented in stoichiometric amounts with the filamentous myosin. In contrast, My4, which recognized a site on the rod, inhibited the polymerization of monomeric myosin into filaments. A single antibody (My6) affected the actin-activated ATPase of myosin. The nature of the effect depended on the valency of the antibody and the myosin. Bivalent IgG and F(ab')2 fragments of My6 inhibited the actin-activated ATPase of filamentous myosin by 50% whereas univalent Fab' fragments increased the activity by 50%. The actin-activated ATPase activity of the soluble chymotryptic fragment of myosin was increased 80-90% by both F(ab')2 and Fab' of My6.  相似文献   

9.
We purified to homogeneity the Dictyostelium discoideum myosin heavy chain kinase that is implicated in the heavy chain phosphorylation increases that occur during chemotaxis. The kinase is initially found in the insoluble fraction of developed cells. The major purification step was achieved by affinity chromatography using a tail fragment of Dictyostelium myosin (LMM58) expressed in Escherichia coli (De Lozanne, A., Berlot, C. H., Leinwand, L. A., and Spudich, J. A. (1988) J. Cell Biol. 105, 2990-3005). The kinase has an apparent molecular weight of 84,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent native molecular weight by gel filtration is 240,000. The kinase catalyzes phosphorylation of myosin heavy chain or LMM58 with similar kinetics, and the extent of phosphorylation for both is 4 mol of phosphate/mol. With both substrates the Vmax is about 18 mumol/min/mg and the Km is 15 microM. The myosin heavy chain kinase is specific to Dictyostelium myosin heavy chain, and the phosphorylated amino acid is threonine. The kinase undergoes autophosphorylation. Each mole of kinase subunit incorporates about 20 mol of phosphates. Phosphorylation of myosin by this kinase inhibits myosin thick filament formation, suggesting that the kinase plays a role in the regulation of myosin assembly.  相似文献   

10.
The 110-kD protein-calmodulin complex (110K-CM) of the intestinal brush border serves to laterally tether microvillar actin filaments to the plasma membrane. Results from several laboratories have demonstrated that this complex shares many enzymatic and structural properties with myosin. The mechanochemical potential of purified avian 110K-CM was assessed using the Nitella bead motility assay (Sheetz, M. P., and J. A. Spudich. 1983. Nature (Lond.). 303:31-35). Under low Ca2+ conditions, 110K-CM-coated beads bound to actin cables, but no movement was observed. Using EGTA/calcium buffers (approximately 5-10 microM free Ca2+) movement of 110K-CM-coated beads along actin cables (average rate of approximately 8 nm/s) was observed. The movement was in the same direction as that for beads coated with skeletal muscle myosin. The motile preparations of 110K-CM were shown to be free of detectable contamination by conventional brush border myosin. Based on these and other observations demonstrating the myosin-like properties of 110K-CM, we propose that this complex be named "brush border myosin I."  相似文献   

11.
Vertebrate myosin Va is a dimeric processive motor that walks on actin filaments to deliver cargo. In contrast, the two class V myosins in budding yeast, Myo2p and Myo4p, are non-processive (Reck-Peterson, S. L., Tyska, M. J., Novick, P. J., and Mooseker, M. S. (2001) J. Cell Biol. 153, 1121-1126). We previously showed that a chimera with the motor domain of Myo4p on the backbone of vertebrate myosin Va was processive, demonstrating that the Myo4p motor domain has a high duty ratio. Here we examine the properties of a chimera containing the rod and globular tail of Myo4p joined to the motor domain and neck of mouse myosin Va. Surprisingly, the adaptor protein She3p binds to the rod region of Myo4p and forms a homogeneous single-headed myosin-She3p complex, based on sedimentation equilibrium and velocity data. We propose that She3p forms a heterocoiled-coil with Myo4p and is a subunit of the motor. She3p does not affect the maximal actin-activated ATPase in solution or the velocity of movement in an ensemble in vitro motility assay. At the single molecule level, the monomeric myosin-She3p complex showed no processivity. When this construct was dimerized with a leucine zipper, short processive runs were obtained. Robust continuous movement was observed when multiple monomeric myosin-She3p motors were bound to a quantum dot "cargo." We propose that continuous transport of mRNA by Myo4p-She3p in yeast is accomplished either by multiple high duty cycle monomers or by molecules that may be dimerized by She2p, the homodimeric downstream binding partner of She3p.  相似文献   

12.
It has been previously demonstrated that the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II is inhibited by phosphorylation of its two heavy chains (Collins, J. H., and Korn, E. D. (1980) J. Biol. Chem. 255, 8011-8014). In this paper, it is shown that a partially purified kinase preparation from Acanthamoeba catalyzes the incorporation of 3 mol of phosphate into each mole of myosin II heavy chain. Tryptic digestion of the 32P-myosin, followed by two-dimensional peptide mapping, indicates that two of the three sites phosphorylated by the kinase in vitro correspond to the two major phosphorylation sites on the myosin heavy chain in vivo. Phosphorylation of myosin II in vitro by the kinase fraction completely inhibits the actin-activated Mg2+-ATPase activity of myosin II. Myosin II can be isolated in a highly phosphorylated, enzymatically inactive form, then dephosphorylated to an active form, and finally rephosphorylated to an inactive form. The Acanthamoeba kinase fraction catalyzes the phosphorylation of all three sites on the heavy chain of myosin II at virtually the same rate. From a comparison of the decrease in actin-activated Mg2+-ATPase activity with the amount of phosphate incorporated into myosin II, and from the results obtained previously by dephosphorylating myosin II (Collins, J. H., and Korn, E. D., (1980) J. Biol. Chem. 255, 8011-8014), it can be inferred that two of the sites phosphorylated in vitro act in a synergistic manner to inhibit the actin-activated myosin II Mg2+-ATPase.  相似文献   

13.
《The Journal of cell biology》1990,111(6):2405-2416
We used a series of COOH-terminally deleted recombinant myosin molecules to map precisely the binding sites of 22 monoclonal antibodies along the tail of Acanthamoeba myosin-II. These antibodies bind to 14 distinguishable epitopes, some separated by less than 10 amino acids. The positions of the binding sites visualized by electron microscopy agree only approximately with the physical positions of these sites on the alpha-helical coiled-coil tail. On the other hand, the epitope map agrees precisely with competitive binding studies: all antibodies that share an epitope compete with each other for binding to myosin. Antibodies with adjacent epitopes can compete with each other at linear distances up to 5 or 6 nm, and many antibodies that bind 3-7- nm apart can enhance the binding of each other to myosin. Most of the antibodies that bind to the distal 37 nm of the tail disrupt assembly of octameric minifilaments and, depending upon the exact location of the binding site, stop assembly at specific steps yielding, for example, monomers, antiparallel dimers, parallel dimers or antiparallel tetramers. The effects of these antibodies on assembly identify sites on the tail that are required for individual steps in minifilament assembly. Experiments on the assembly of truncated myosin-II tails have revealed a complementary group of sites that participate in the assembly reactions (Sinard, J.H., D.L. Rimm, and T.D. Pollard. 1990. J. Cell Biol. 111:2417-2426). Antibodies that bind to the distal tail but do not affect assembly appear to have a low affinity for myosin-II. Antibodies that bind to the proximal 50 nm of the tail do not inhibit the assembly of minifilaments. Many antibodies that bind to the tail of myosin-II, even some that have no obvious effect on minifilament assembly, can inhibit the actomyosin ATPase activity and the contraction of an actin gel formed in crude extracts. An antibody that binds between amino acids 1447 and 1467 inhibits the phosphorylation of serine residues distal to residue 1483.  相似文献   

14.
G Walker  R Yabkowitz  D R Burgess 《Biochemistry》1991,30(42):10206-10210
The way in which actin and myosin II become localized to the contractile ring of dividing cells resulting in cleavage furrow formation and cytokinesis is unknown. While much is known about actin binding proteins and actin localization, little is known about myosin localization. A 53-kDa (53K) polypeptide present in the sea urchin egg binds to myosin II in a nucleotide-dependent manner and mediates its solubility in vitro [Yabkowitz, R., & Burgess, D.R. (1987) J. Cell Biol. 105, 927-936]. The binding site of 53K on the myosin molecule was examined in an effort to understand the mechanism of 53K-induced myosin solubility and its potential function in myosin regulation. Blot overlay and chemical cross-linking techniques utilizing myosin proteolytic fragments indicate that 53K binds to fragments proximal to the head-rod junction of myosin. Fragments distal to the head-rod junction do not bind 53K. In addition, the binding of 53K to myosin largely inhibits protease digestion that produces the head and rod fragments. The binding of 53K to the head-rod domain of myosin may be critical in regulation of myosin conformation, localization, assembly, and ATPase activity.  相似文献   

15.
In our previous reports, ATP was shown to induce a drastic change in the conformation of gizzard myosin molecules. For example, the sedimentation constant of unphosphorylated myosin (UM) increased from 6S to 10S although an ATP-induced change in the sedimentation constant did not occur with phosphorylated myosin (Suzuki et al. (1978) J. Biochem. 84, 1529). We now report the finding that the ATP-induced formation of 10S-myosin is associated with a drastic change in the papain digestibility of gizzard UM. With 10S-myosin, the cleavage by papain was strongly inhibited at two regions on heavy chains and at one region on light chains; that is, the junction between the 72K dalton and 22K dalton fragments (i.e., a cleavable site in myosin head), the one between the 22K dalton and 130K dalton fragments (i.e., a head-tail junction), and the one between the 3K dalton and 17K dalton fragments of 20K dalton light chains. An even more intimate correlation between the myosin conformation and the papain digestibility of myosin was demonstrated by using thiophosphorylated myosin (thioPM); the cleavages by papain at the 72K-22K dalton junction and the 22K-130K dalton junction were not inhibited when thioPM was digested.  相似文献   

16.
Eight monoclonal antibodies that bind to specific sites on the tail of Dictyostelium discoideum myosin were tested for their effects on polymerization and ATPase activity. Two antibodies that bind close to the myosin heads inhibited actin activation of the ATPase either partially or completely, without having an effect on polymerization. Two other antibodies bind to sites within the distal portion of the tail that has been shown, by cleavage mapping, to be important for polymerization. One of these antibodies binds close to the sites of heavy chain phosphorylation which is known to regulate both myosin polymerization and actin-activated ATPase activity. Both antibodies showed strong inhibition of polymerization accompanied by complete inhibition of the actin-activated ATPase activity. A unique effect was obtained with an antibody that binds to the end of the myosin tail. This antibody prevented the formation of bipolar filaments. It caused myosin to assemble into unipolar filaments with heads at one end and the antibody molecules at the other. Only at concentrations higher than required for its effect on polymerization did this antibody show substantial inhibition of the actin-activated ATPase. These results indicate that, using a monoclonal antibody as a blocking agent, parallel assembly of myosin can be dissected out from antiparallel association, and that essentially normal actin-activated ATPase activity could be obtained after significant reductions in filament size.  相似文献   

17.
Vertebrate smooth muscle myosin heavy chains (MHCs) exist as two isoforms with molecular masses of 204 and 200 kDa (MHC204 and MHC200) that are generated from a single gene by alternative splicing of mRNA (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). A dimer of two MHCs associated with two pairs of myosin light chains forms a functional myosin molecule. To investigate the isoform composition of the MHCs in native myosin, antibodies specific for MHC204 were generated and used to immunoprecipitate purified bovine aortic smooth muscle myosin from a solution containing equal amounts of each isoform. MHC204 quantitatively removed from this mixture was completely free of MHC200. Immunoprecipitation of the supernatant with an antiserum that recognizes both isoforms equally well revealed that only MHC200 remained. We conclude that only homodimers of MHC204 and MHC200 exist under these conditions. A method is described for the purification of enzymatically active MHC204 and myosin on a protein G-agarose high performance liquid chromatography column containing immobilized MHC204 antibodies. We show, using an in vitro motility assay, that the movement of actin filaments by myosin containing 204-kDa heavy chains (0.435 +/- 0.115 microns/s) was not significantly different from that of myosin containing 200-kDa heavy chains (0.361 +/- 0.078 microns/s) or from myosin containing equal amounts of each heavy chain isoform (0.347 +/- 0.082 microns/s).  相似文献   

18.
The actin bundle within each microvillus of the intestinal brush border (BB) is tethered laterally to the membrane by bridges composed of BB myosin I. Avian BB myosin I, formerly termed 110K-calmodulin, consists of a heavy chain with an apparent Mr of 110 kD and three to four molecules of calmodulin "light chains." Recent studies have shown that this complex shares many properties with myosin including mechanochemical activity. In this report, the isolation and characterization of a membrane fraction enriched in bound BB myosin I is described. This membrane fraction, termed microvillar membrane disks, was purified from ATP extracts of nonionic detergent-treated microvilli prepared from avian intestinal BBs. Ultrastructural analysis revealed that these membranes are flat, disk-shaped sheets with protrusions which are identical in morphology to purified BB myosin I. The disks exhibit actin-activated Mg-ATPase activity and bind and cross-link actin filaments in an ATP-dependent fashion. The mechanochemical activity of the membrane disks was assessed using the Nitella bead movement assay (Sheetz, M. P., and J. A. Spudich. 1983. Nature [Lond.]. 303:31-35). These preparations were shown to be free of significant contamination by conventional BB myosin. Latex beads coated with microvillar membrane disks move in a myosin-like fashion along Nitella actin cables at rates of 12-60 nm/s (average rate of 33 nm/s); unlike purified BB myosin I, the movement of membrane disk-coated beads was most reproducibly observed in buffers containing low Ca2+.  相似文献   

19.
Acanthamoebe profilin has a native molecular weight of 11,700 as measured by sedimentation equilibrium ultracentrifugation and an extinction coefficient at 280 nm of 1.4 X 10(4) M-1cm-1. Rabbit antibodies against Acanthamoeba profilin react only with the 11,700 Mr polypeptide among all other ameba polypeptides separated by electrophoresis. These antibodies react with a 11,700 Mr polypeptide in Physarum but not with any proteins of Dictyostelium or Naeglaria. Antibody-binding assays indicate that approximately 2% of the ameba protein is profilin and that the concentration of profilin is approximately 100 mumol/liter cells. During ion exchange chromatography of soluble extracts of Acanthamoeba on DEAE-cellulose, the immunoreactive profilin splits into two fractions: an unbound fraction previously identified by Reichstein and Korn (1979, J. Biol. Chem., 254:6174-6179) and a tightly bound fraction. Purified profilin from the two fractions is identical by all criteria tested. The tightly bound fraction is likely to be attached indirectly to the DEAE, perhaps by association with actin. By fluorescent antibody staining, profilin is distributed uniformly throughout the cytoplasmic matrix of Acanthamoeba. In 50 mM KCl, high concentrations of Acanthamoeba profilin inhibit the elongation rate of muscle actin filaments measured directly by electron microscopy, but the effect is minimal in KCl with 2 MgCl2. By using the fluorescence change of pyrene-labeled Acanthamoeba actin to assay for polymerization, we confirmed our earlier observation (Tseng, P. C.-H., and T. D. Pollard, 1982, J. Cell Biol. 94:213-218) that Acanthamoeba profilin inhibits nucleation much more strongly than elongation under physiological conditions.  相似文献   

20.
In Dictyostelium, an ordered actin and myosin assembly-disassembly process is necessary for proper development, differentiation, and motility (Yumura S, Fukui F, 1985, Nature 314(6007): 194-196; Ravid S, Spudich JA, 1989, J Biol Chem 264(25): 15144-15150), and phosphorylation of myosin heavy chains has been implicated in the myosin assembly-disassembly process (Egelhoff TT, Lee RJ, Spudich JA, 1993, Cell 75(2):363-371). The developmentally expressed 84-kDa myosin heavy-chain kinase (MHCK) from Dictyostelium (Ravid S, Spudich JA, 1992, Proc Natl Acad Sci USA 89(13):5877-5881) is known to be a member of the protein kinase C (PKC) family. We have observed a rather striking homology between the large central domain of MHCK and the catalytic domain of diacylglycerol kinase (DGK), indicating that MHCK is in fact a gene fusion between a DGK and a PKC, possessing two separate kinase domains. The combined diacylglycerol kinase/myosin heavy-chain kinase (DGK/MHCK) may therefore have dual functionality, possessing the ability to phosphorylate both protein and lipid. We present a hypothesis that DGK/MHCK can antagonize both actin and myosin assembly, as well as other cellular processes, by coordinated down regulation of signaling via myosin heavy-chain kinase activity and diacylglycerol kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号