首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
With the increasing energy crisis and environmental pollution, rechargeable aqueous Zn‐based batteries (AZBs) are receiving unprecedented attention due to their list of merits, such as low cost, high safety, and nontoxicity. However, the limited voltage window, Zn dendrites, and relatively low specific capacity are still great challenges. In this work, a new reaction mechanism of reversible Mn2+ ion oxidation deposition is introduced to AZBs. The assembled Mn2+/Zn2+ hybrid battery (Mn2+/Zn2+ HB) based on a hybrid storage mechanism including Mn2+ ion deposition, Zn2+ ion insertion, and conversion reaction of MnO2 can achieve an ultrawide voltage window (0–2.3 V) and high capacity (0.96 mAh cm?2). Furthermore, the carbon nanotubes coated Zn anode is proved to effectively inhibit Zn dendrites and control side reaction, hence exhibiting an ultrastable cycling (33 times longer than bare Zn foil) without obvious polarization. Benefiting from the optimal Zn anode and highly reversible Mn2+/Zn2+ hybrid storage mechanism, the Mn2+/Zn2+ HB shows an excellent cycling performance over 11 000 cycles with a 100% capacity retention. To the best of the authors' knowledge, it is the highest reported cycling performance and wide voltage window for AZBs with mild electrolyte, which may inspire a great insight into designing high‐performance aqueous batteries.  相似文献   

2.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

3.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   

4.
Rechargeable batteries based on MnO2 cathodes, able to operate in mild aqueous electrolytes, have attracted attention due to their appealing features for the design of low‐cost stationary energy storage devices. However, the charge/discharge mechanism of MnO2 in such media is still a matter of debate. Here, an in‐depth quantitative spectroelectrochemical analysis of MnO2 thin‐films provides a set of unrivaled mechanistic insights. A major finding is that charge storage occurs through the reversible two‐electron faradaic conversion of MnO2 into Mn2+ in the presence of a wide range of weak Brønsted acids, including the [Zn(H2O)6]2+ or [Mn(H2O)6]2+ complexes present in aqueous Zn/MnO2 batteries. Furthermore, it is shown that buffered electrolytes loaded with Mn2+ are ideal to achieve highly reversible conversion of MnO2 with both high gravimetric capacity and remarkably stable charging/discharging potentials. In the most favorable case, a record gravimetric capacity of 450 mA·h·g?1 is obtained at a high rate of 1.6 A·g?1, with a Coulombic efficiency close to 100% and a MnO2 utilization of 84%. Overall, the present results challenge the common view on MnO2 the charge storage mechanism in mild aqueous electrolytes and underline the benefit of buffered electrolytes for high‐performance rechargeable aqueous batteries.  相似文献   

5.
Zn‐based batteries are safe, low cost, and environmentally friendly, as well as delivering the highest energy density of all aqueous battery systems. However, the application of Zn‐based batteries is being seriously hindered by the uneven electrostripping/electroplating of Zn on the anodes, which always leads to enlarged polarization (capacity fading) or even cell shorting (low cycling stability). How a porous nano‐CaCO3 coating can guide uniform and position‐selected Zn stripping/plating on the nano‐CaCO3‐layer/Zn foil interfaces is reported here. This Zn‐deposition‐guiding ability is mainly ascribed to the porous nature of the nano‐CaCO3‐layer, since similar functionality (even though relatively inferior) is also found in Zn foils coated with porous acetylene black or nano‐SiO2 layers. Furthermore, the potential application of this strategy is demonstrated in Zn|ZnSO4+MnSO4|CNT/MnO2 rechargeable aqueous batteries. Compared with the ones with bare Zn anodes, the battery with a nano‐CaCO3‐coated Zn anode delivers a 42.7% higher discharge capacity (177 vs 124 mAh g?1 at 1 A g?1) after 1000 cycles.  相似文献   

6.
The progress of aqueous zinc batteries (AZBs) is limited by the poor cycling life due to Zn anode instability, including dendrite growth, surface corrosion, and passivation. Inspired by the anti-corrosion strategy of steel industry, a compounding corrosion inhibitor (CCI) is employed as the electrolyte additive for Zn metal anode protection. It is shown that CCI can spontaneously generate a uniform and ≈30 nm thick solid-electrolyte interphase (SEI) layer on Zn anode with a strong adhesion via Zn O bonding. This SEI layer efficiently prohibits water corrosion and guides homogeneous Zn deposition without obvious dendrite formation. This enables reversible Zn deposition and dissolution for over 1100 h under the condition of 1 mA cm−2 and 1 mAh cm−2 in symmetric cells. The Zn-MnO2 full cells with CCI-modified electrolyte deliver an ultralow capacity decay rate (0.013% per cycle) at 0.5 A g−1 over 1000 cycles. Such an innovative strategy paves a low-cost way to achieve AZBs with long lifespan.  相似文献   

7.
Rechargeable aqueous zinc‐ion batteries (ZIBs) have been emerging as potential large‐scale energy storage devices due to their high energy density, low cost, high safety, and environmental friendliness. However, the commonly used cathode materials in ZIBs exhibit poor electrochemical performance, such as significant capacity fading during long‐term cycling and poor performance at high current rates, which significantly hinder the further development of ZIBs. Herein, a new and highly reversible Mn‐based cathode material with porous framework and N‐doping (MnOx@N‐C) is prepared through a metal–organic framework template strategy. Benefiting from the unique porous structure, conductive carbon network, and the synergetic effect of Zn2+ and Mn2+ in electrolyte, the MnOx@N‐C shows excellent cycling stability, good rate performance, and high reversibility for aqueous ZIBs. Specifically, it exhibits high capacity of 305 mAh g?1 after 600 cycles at 500 mA g?1 and maintains achievable capacity of 100 mAh g?1 at a quite high rate of 2000 mA g?1 with long‐term cycling of up to 1600 cycles, which are superior to most reported ZIB cathode materials. Furthermore, insight into the Zn‐storage mechanism in MnOx@N‐C is systematically studied and discussed via multiple analytical methods. This study opens new opportunities for designing low‐cost and high‐performance rechargeable aqueous ZIBs.  相似文献   

8.
Rechargeable aqueous Zn‐based batteries are attractive candidates as energy storage technology, but the uncontrollable Zn dendrites, low stripping/plating coulombic efficiency, and inefficient utilization of Zn metal limit the battery reliability and energy density. Herein, for the first time, a novel presodiated TiS2 (Na0.14TiS2) is proposed and investigated as an intercalated anode for aqueous Zn‐ion batteries, showing a capacity of 140 mAh g?1 with a suitable potential of 0.3 V (vs Zn2+/Zn) at 0.05 A g?1 and superior cyclability of 77% retention over 5000 cycles at 0.5 A g?1. The remarkable performance originates from the buffer phase formation of Na0.14TiS2 after chemically presodiating TiS2, which not only improves the structural reversibility and stability but also enhances the diffusion coefficient and electronic conductivity, and lowers cation migration barrier, as evidenced by a series of experimental and theoretical studies. Moreover, an aqueous “rocking‐chair” Zn‐ion full battery is successfully demonstrated by this Na0.14TiS2 anode and ZnMn2O4 cathode, which delivers a capacity of 105 mAh g?1 (for anode) with an average voltage of 0.95 V at 0.05 A g?1 and preserves 74% retention after 100 cycles at 0.2 A g?1, demonstrating the feasibility of Zn‐ion full batteries for energy storage applications.  相似文献   

9.
Aqueous sodium‐ion batteries have shown desired properties of high safety characteristics and low‐cost for large‐scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel‐type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium‐ion batteries. However, the low achievable capacity hinders its practical applications. Here, a novel sodium rich tunnel‐type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2 is reported. The tunnel‐type structure of Na0.44MnO2 obtained for this compound is confirmed by X‐ray diffraction and atomic‐scale spherical aberration‐corrected scanning transmission electron microscopy/electron energy‐loss spectrum. When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1 m Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g?1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2 C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium‐ion batteries.  相似文献   

10.
Uncontrolled growth of Zn dendrites is the main reason for the short-circuit failure of aqueous Zn-ion batteries. Using electrolyte additives to manipulate the crystal growth is one of the most convenient strategies to mitigate the dendrite issue. However, most additives would be unstable during cycling due to the structural reconstruction of the deposition layer. Herein, it is proposed to use 1-butyl-3-methylimidazolium cation (BMIm+ ion) as an electrolyte additive, which could steadily induce the preferential growth of (002) plane and inhibit the formation of Zn dendrites. Specifically, BMIm+ ion will be preferentially adsorbed on (100) and (101) planes of Zn anodes, forcing Zn2+ ion to deposit on the (002) plane, thus inducing the preferential growth of the (002) plane and forming a flat and compact deposition layer. As a result, the Zn anode cycles for 1000 h at10 mA cm−2 and 10 mAh cm−2 as well as a high Coulombic efficiency of 99.8%. Meanwhile, the NH4V4O10||Zn pouch cell can operate stably for 240 cycles at 0.4 A g−1. The BMIm+ ion additive keeps a stable effect on the structural reconstruction of the Zn anode during the prolonged cycling.  相似文献   

11.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

12.
While 2D MXenes have been widely used in energy storage systems, surface barriers induced by restacking of nanosheets and the limited kinetics resulting from insufficient interlayer spacing are two unresolved issues. Here an Sn4+ preintercalated Ti2CTX with effectively enlarged interlayer spacing is synthesized. The preintercalated Ti2CTX is aligned on a carbon sphere to further enhance ion transportation by shortening the ion diffusion path and enhancing the reaction kinetics. As a result, when paired with a Zn anode, 12 500 cycles, which equals 2 800 h cycle time, and 5% capacity fluctuation are obtained, surpassing all reported MXene‐based aqueous electrodes. At 0.1 A g‐1, the capacity reaches 138 mAh g‐1, and 92 mAh g‐1 remains even at 5 A g‐1. In addition, the low anti‐self‐discharge rate of 0.989 mV h‐1 associated with a high capacity retention of 80.5% over 548 h is obtained. Moreover, the fabricated quasi‐solid capacitor based on a hydrogel film electrolyte exhibits good mechanical deformation and weather resistance. This work employs both preintercalation and alignment to MXene and achieves enhanced ion diffusion kinetics in an aqueous zinc ion capacitors (ZICs) system, which may be applied to other MXene batteries for enhanced performance.  相似文献   

13.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

14.
A major limitation of MnO2 in aqueous Zn/MnO2 ion battery applications is the poor utilization of its electrochemical active surface area. Herein, it is shown that by generating oxygen vacancies (VO) in the MnO2 lattice, Gibbs free energy of Zn2+ adsorption in the vicinity of VO can be reduced to thermoneutral value (≈0.05 eV). This suggests that Zn2+ adsorption/desorption process on oxygen‐deficient MnO2 is more reversible as compared to pristine MnO2. In addition, because of the fact that fewer electrons are needed for Zn? O bonding in oxygen‐deficient MnO2, more valence electrons can be contributed into the delocalized electron cloud of the material, which aids in enhancing the attainable capacity. As a result, the stable Zn/oxygen‐deficient MnO2 battery is able to deliver one of the highest capacities of 345 mAh g?1 reported for a birnessite MnO2 system. This excellent electrochemical performance suggests that generating oxygen vacancies in MnO2 may aid in the future development of advanced cathodes for aqueous Zn ion batteries.  相似文献   

15.
16.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

17.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

18.
The recent trend in zinc (Zn) anode aqueous batteries has been to explore layered structures like manganese dioxides and vanadium oxides as Zn‐ion intercalation hosts. These structures, although novel, face limitations like their layered counterparts in lithium (Li)‐ion batteries, where the capacity is limited to the host's intercalation capacity. In this paper, a new strategy is proposed in enabling new generation of energy dense aqueous‐based batteries, where the conversion reactions of rock salt/spinel manganese oxides and carbon nanotube‐nested nanosized Zn electrodes are exploited to extract significantly higher capacity compared to intercalation systems. Accessing the conversion reactions allows to achieve high capacities of 750 mAh g?1 (≈30 mAh cm?2) from manganese oxide (MnO) and 810 mAh g?1 (≈30 mAh cm?2) from nanoscale Zn anodes, respectively. The high areal capacities help to attain unprecedented energy densities of 210 Wh per L‐cell and 320 Wh per kg‐total (398 Wh per kg‐active) from aqueous MnO|CNT‐Zn batteries, which allows an assessment of its viable use in a small‐scale automobile.  相似文献   

19.
An redox luminescence switch was developed for the sensing of glutathione (GSH), l ‐cysteine (Cys) or l ‐ascorbic acid (AA) based on redox reaction. The Mn2+‐doped NaYF4:Yb,Er upconversion nanorods (UCNRs) with an emission peak located in the red region were synthesized. The luminescence intensity of the UCNRs could be quenched due to the Mn2+ could be oxidized to MnO2 by KMnO4. Subsequently, when the AA, GSH or Cys was added into the MnO2 modified upconversion nanosystem, which could reduced MnO2 to Mn2+ and the luminescence intensity was recovered. The concentration ranges of the nanosystem are 0.500–3.375 mM (R2 = 0.99) for AA, 0.6250–11.88 mM (R2 = 0.99) for GSH and 0.6250–9.375 mM (R2 = 0.99) for Cys, respectively.  相似文献   

20.
Mn oxides are highly important electrode materials for aqueous electrochemical energy storage devices, including batteries and supercapacitors. Although MnO2 is a promising pseudocapacitor material because of its outstanding rate and capacity performance, its electrochemical instability in aqueous electrolyte prevents its use at low electrochemical potential. Here, the possibility of stabilizing MnO2 electrode using SiO2‐confined nanostructure is demonstrated. Remarkably, an exceptionally good electrochemical stability under large negative polarization in aqueous (Li2SO4) electrolyte, usually unattainable for MnO2‐based electrode, is achieved. Even more interestingly, this MnO2–SiO2 nanostructured composite exhibits unique mixed pseudocapacitance‐battery behaviors involving consecutive reversible charge transfer from Mn(IV) to Mn(II), which enable simultaneous high‐capacity and high‐rate characteristics, via different charge‐transfer kinetic mechanisms. This suggests a strategy to design and stabilize electrochemical materials that are comprised of intrinsically unstable but high‐performing component materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号