首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
The use of bio‐nanotechnology for the fabrication of diverse functional nanomaterials with precisely controlled morphologies and microstructures is attracting considerable attention due to its sustainability and renewability. As one of the key energy storage devices, supercapacitor (SC) requires the active electrode material to have high specific surface area, interconnected porous structure, excellent electronic conductivity, and appropriate heteroatom doping for promoting the transfer of electrons and electrolyte ions. The combination of bio‐technology and SC will open up a new avenue for the large‐scale fabrication of high performance functional energy storage devices. In this review, the most state‐of‐the‐art research progress in bio‐nanotechnological fabrication of different nanomaterials, including carbon materials, metal oxides, conducting polymers, and their corresponding composites are reviewed with the following three bio‐nanotechnical approaches covered: (1) biomass carbonization technologies; (2) bio‐template methods; and (3) bio‐complex technologies, while also highlighting their applications as functional SC electrodes.  相似文献   

2.
Two‐dimensional (2D) nanomaterials (i.e., graphene and its derivatives, transition metal oxides and transition metal dichalcogenides) are receiving a lot attention in energy storage application because of their unprecedented properties and great diversities. However, their re‐stacking or aggregation during the electrode fabrication process has greatly hindered their further developments and applications in rechargeable lithium batteries. Recently, rationally designed hierarchical structures based on 2D nanomaterials have emerged as promising candidates in rechargeable lithium battery applications. Numerous synthetic strategies have been developed to obtain hierarchical structures and high‐performance energy storage devices based on these hierarchical structure have been realized. This review summarizes the synthesis and characteristics of three styles of hierarchical architecture, namely three‐dimensional (3D) porous network nanostructures, hollow nanostructures and self‐supported nanoarrays, presents the representative applications of hierarchical structured nanomaterials as functional materials for lithium ion batteries, lithium‐sulfur batteries and lithium‐oxygen batteries, meanwhile sheds light particularly on the relationship between structure engineering and improved electrochemical performance; and provides the existing challenges and the perspectives for this fast emerging field.  相似文献   

3.
Electrochemical energy storage is of extraordinary importance for fulfilling the utilization of renewable and sustainable energy sources. There is an increasing demand for energy storage devices with high energy and power densities, prolonged stability, safety, and low cost. In the past decade, numerous research efforts have been devoted to achieving these requirements, especially in the design of advanced electrode materials. Hollow carbon spheres (HCS) derived nanomaterials combining the advantages of 3D HCS and porous structures have been considered as alternative electrode materials for advanced energy storage applications, due to their unique features such as high surface‐to‐volume ratios, encapsulation capability, together with outstanding chemical and thermal stability. In this review, the authors first present a comprehensive overview of the synthetic strategies of HCS, and elucidate the design and synthesis of HCS‐derived nanomaterials including various types of HCS and their nanohybrids. Additionally, their significant roles as electrode materials for supercapacitors, lithium‐ion or sodium‐ion batteries, and sulfur hosts for lithium sulfur batteries are highlighted. Finally, current challenges in the synthesis of HCS and future directions in HCS‐derived nanomaterials for energy storage applications are proposed.  相似文献   

4.
Here an all‐purpose fibrous electrode based on MoS2 is demonstrated, which can be employed for versatile energy harvesting and storage applications. In this coaxial electrode, ultrathin MoS2 nanofilms are grown on TiO2 nanoparticles coated carbon fiber. The high electrochemical activity of MoS2 and good conductivity of carbon fiber synergistically lead to the remarkable performances of this novel composite electrode in fibrous dye‐sensitized solar cells (showing a record‐breaking conversion efficiency of 9.5%) and high‐capacity fibrous supercapacitors. Furthermore, a self‐powering energy fiber is fabricated by combining a fibrous dye‐sensitized solar cell and a fibrous supercapacitor into a single device, showing very fast charging capability (charging in 7 s under AM1.5G solar illumination) and an overall photochemical‐electricity energy conversion efficiency as high as 1.8%. In addition, this wire‐shaped electrode can also be used for fibrous Li‐ion batteries and electrocatalytic hydrogen evolution reactions. These applications indicate that the MoS2‐based all‐purpose fibrous electrode has great potential for the construction of high‐performance flexible and wearable energy devices.  相似文献   

5.
Currently, tremendous efforts are being devoted to develop high‐performance electrochemical energy‐storage materials and devices. Conventional electrochemical energy‐storage systems are confronted with great challenges to achieve high energy density, long cycle‐life, excellent biocompatibility and environmental friendliness. The biological energy metabolism and storage systems have appealing merits of high efficiency, sophisticated regulation, clean and renewability, and the rational design and fabrication of advanced electrochemical energy‐storage materials and smart devices inspired by nature have made some breakthrough progresses, recently. In this review, we summarize the latest developments in the field of nature‐inspired electrochemical energy‐storage materials and devices. Specifically, the nature‐inspired exploration, preparation and modification of electrochemical energy‐storage related materials including the active materials, binders, and separators are introduced. Furthermore, nature‐inspired design and fabrication of smart energy‐storage devices such as self‐healing supercapacitors, supercapacitors with ultrahigh operating voltage, and self‐rechargeable batteries are also discussed. The review aims to provide insights and expanded research perspectives for further study in this exciting field based on our comprehensive discussions.  相似文献   

6.
By virtue of diverse structures and tunable properties, metal‐organic frameworks (MOFs) have presented extensive applications including gas capture, energy storage, and catalysis. Recently, synthesis of MOFs and their derived nanomaterials provide an opportunity to obtain competent oxygen reduction reaction (ORR) electrocatalysts due to their large surface area, controllable composition and pore structure. This review starts with the introduction of MOFs and current challenges of ORR, followed by the discussion of MOF‐based non‐precious metal nanocatalysts (metal‐free and metal/metal oxide‐based carbonaceous materials) and their application in ORR electrocatalysis. Current issues in MOF‐derived ORR catalysts and some corresponding strategies in terms of composition and morphology to enhance their electrocatalytic performance are highlighted. In the last section, a perspective for future development of MOFs and their derivatives as catalysts for ORR is discussed.  相似文献   

7.
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene‐based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene‐based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high‐performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)‐ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)‐ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage‐related applications are discussed.  相似文献   

8.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.  相似文献   

9.
Pseudocapacitive materials have been highlighted as promising electrode materials to overcome slow diffusion‐limited redox mechanism in active materials, which impedes fast charging/discharging in energy storage devices. However, previously reported pseudocapacitive properties have been rarely used in lithium‐ion batteries (LIBs) and evaluation methods have been limited to those focused on thin‐film‐type electrodes. Hence, a nanocage‐shaped silicon–carbon composite anode is proposed with excellent pseudocapacitive qualities for LIB applications. This composite anode exhibits a superior rate capability compared to other Si‐based anodes, including commercial silicon nanoparticles, because of the higher pseudocapacitive contribution coming from ultrathin Si layer. Furthermore, unprecedent 3D pore design in cage shape, which prevents the particle scale expansion even after full lithiation demonstrates the high cycling stability. This concept can potentially be used to realize high‐power and high‐energy LIB anode materials.  相似文献   

10.
Iron oxides, such as Fe2O3 and Fe3O4, have recently received increased attention as very promising anode materials for rechargeable lithium‐ion batteries (LIBs) because of their high theoretical capacity, non‐toxicity, low cost, and improved safety. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, recent research progress in the rational design and synthesis of diverse iron oxide‐based nanomaterials and their lithium storage performance for LIBs, including 1D nanowires/rods, 2D nanosheets/flakes, 3D porous/hierarchical architectures, various hollow structures, and hybrid nanostructures of iron oxides and carbon (including amorphous carbon, carbon nanotubes, and graphene). By focusing on synthesis strategies for various iron‐oxide‐based nanostructures and the impacts of nanostructuring on their electrochemical performance, novel approaches to the construction of iron‐oxide‐based nanostructures are highlighted and the importance of proper structural and compositional engineering that leads to improved physical/chemical properties of iron oxides for efficient electrochemical energy storage is stressed. Iron‐oxide‐based nanomaterials stand a good chance as negative electrodes for next generation LIBs.  相似文献   

11.
Direct inkjet printing of functional inks is an emerging and promising technique for the fabrication of electrochemical energy storage devices. Electrochromic energy devices combine electrochromic and energy storage functions, providing a rising and burgeoning technology for next‐generation intelligent power sources. However, printing such devices has, in the past, required additives or other second phase materials in order to create inks with suitable rheological properties, which can lower printed device performance. Here, tungsten oxide nanocrystal inks are formulated without any additives for the printing of high‐quality tungsten oxide thin films. This allows the assembly of novel electrochromic pseudocapacitive zinc‐ion devices, which exhibit a relatively high capacity (≈260 C g?1 at 1 A g?1) with good cycling stability, a high coloration efficiency, and fast switching response. These results validate the promising features of inkjet‐printed electrochromic zinc‐ion energy storage devices in a wide range of applications in flexible electronic devices, energy‐saving buildings, and intelligent systems.  相似文献   

12.
Vertical graphene nanosheets (VGNS) hold great promise for high‐performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three‐dimensional, open network structure. However, it remains challenging to materialise the VGNS‐based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non‐cost effective way of fabrication. Here we use a single‐step, fast, scalable, and environmentally‐benign plasma‐enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder‐free supercapacitor electrodes exhibit high specific capacitance up to 230 F g?1 at a scan rate of 10 mV s?1 and >99% capacitance retention after 1,500 charge‐discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano‐architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma‐unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.  相似文献   

13.
Solid‐state lithium metal batteries (SSLMBs) may become one of the high‐energy density storage devices for the next generation of electric vehicles. High safety and energy density can be achieved by utilizing solid electrolytes and Li metal anodes. Therefore, developing cathode materials which can match with Li metal anode efficiently is indispensable. In SSLMBs, Li metal anodes can afford the majority of active lithium ions, then lithium‐depleted cathode materials can be a competitive candidate to achieve high gravimetric energy density as well as save lithium resources. Li0.33MnO2 lithium‐depleted material is chosen, which also has the advantages of low synthesis temperature and low cost (cobalt‐free). Notably, solid‐state electrolyte can greatly alleviate the problem of manganese dissolution in the electrolyte, which is beneficial to improve the cycling stability of the battery. Thus, SSLMBs enable practical applications of lithium‐depleted cathode materials.  相似文献   

14.
The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double‐layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass‐derived N, P‐codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom‐enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom‐enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as‐prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as‐prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long‐term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g?1).  相似文献   

15.
In the past few years, insensitive attentions have been drawn to wearable and flexible energy storage devices/systems along with the emergence of wearable electronics. Much progress has been achieved in developing flexible electrochemical energy storage devices with high end‐use performance. However, challenges still remain in well balancing the electrochemical properties, mechanical properties, and the processing technologies. In this review, a specific perspective on the development of textile‐based electrochemical energy storage devices (TEESDs), in which textile components and technologies are utilized to enhance the energy storage ability and mechanical properties of wearable electronic devices, is provided. The discussion focuses on the material preparation and characteristics, electrode and device fabrication strategies, electrochemical performance and metrics, wearable compatibility, and fabrication scalability of TEESDs including textile‐based supercapacitors and lithium‐ion batteries.  相似文献   

16.
Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties.  相似文献   

17.
Metal–organic framework derived approaches are emerging as a viable way to design carbon‐confined transitional metal phosphides (TMPs@C) for energy storage and conversion. However, their preparation generally involves a phosphorization using a large amount of additional P sources, which inevitably releases flammable, poisonous PH3. Therefore, developing an efficient strategy for eco‐friendly synthesis of TMPs@C is full of challenges. Here, a metal–organophosphine framework (MOPF) derived strategy is developed to allow an eco‐friendly design of TMPs@C without an additional P source, avoiding release of PH3. To illustrate this strategy, 1,3,5‐triaza‐7‐phosphaadamantane (PTA) ligands and Cu(NO3)2 metal centers are employed to construct Cu/PTA‐MOPFs nanosheets. Cu/PTA‐MOPFs can be directly converted to carbon‐confined Cu3P nanoparticles by annealing. Benefiting from high heteroatom content in PTA, a high doping content of 3.92 at% N and 8.26 at% P can also be achieved in the carbon matrix. As a proof‐of‐concept application, N,P‐codoped carbon‐confined Cu3P nanoparticles as anodes for Na‐ion storage exhibit a high initial reversible capacity of 332 mA h g?1 at 50 mA g?1, and superb rate and cyclic performance. Due to rich coordination modes of organophosphine, MOPFs are expected to become a promising molecular platform for design of various heteroatom‐doped TMPs@C for energy storage and conversion.  相似文献   

18.
As the rapid development of intelligent systems moves toward flexible electronics, capacitors with extraordinary flexibility and an outstanding energy storage performance will open up broad prospects for powering portable/wearable electronics and pulsed power applications. This work presents a simple one‐step process to fabricate a flexible Mn‐doped 0.97(0.93Na0.5Bi0.5TiO3‐0.07BaTiO3)‐0.03BiFeO3 (Mn:NBT‐BT‐BFO) inorganic thin film capacitor with the assistance of a 2D fluorophlogopite mica substrate. The film element, which has a high breakdown strength, great relaxor dispersion, and the coexistence of ferroelectric and antiferroelectric phases, has a high recoverable energy storage density (Wrec ≈81.9 J cm?3), high efficiency (η ≈64.4%), superior frequency stability (500 Hz–20 kHz), excellent antifatigue property (1 × 109 cycles), and a broad operating temperature window (25–200 °C). The all‐inorganic Mn:NBT‐BT‐BFO/Pt/mica capacitor has a prominent mechanical‐bending resistance without obvious deterioration in its corresponding energy storage capability when it is subjected to a bending radius of 2 mm or repeated bending for 103 cycles. This work is the first demonstration of an all‐inorganic flexible film capacitor and sheds light on dielectric energy storage devices for portable/wearable applications.  相似文献   

19.
Wearable textile energy storage systems are rapidly growing, but obtaining carbon fiber fabric electrodes with both high capacitances to provide a high energy density and mechanical strength to allow the material to be weaved or knitted into desired devices remains challenging. In this work, N/O‐enriched carbon cloth with a large surface area and the desired pore volume is fabricated. An electrochemical oxidation method is used to modify the surface chemistry through incorporation of electrochemical active functional groups to the carbon surface and to further increase the specific surface area and the pore volume of the carbon cloth. The resulting carbon cloth electrode presents excellent electrochemical properties, including ultrahigh areal capacitance with good rate ability and cycling stability. Furthermore, the fabricated symmetric supercapacitors with a 2 V stable voltage window deliver ultrahigh energy densities (6.8 mW h cm?3 for fiber‐shaped samples and 9.4 mW h cm?3 for fabric samples) and exhibit excellent flexibility. The fabric supercapacitors are further tested in a belt‐shaped device as a watchband to power an electronic watch for ≈9 h, in a heart‐shaped logo to supply power for ≈1 h and in a safety light that functions for ≈1 h, indicating various promising applications of these supercapacitors.  相似文献   

20.
Sodium‐based energy storage technologies are potential candidates for large‐scale grid applications owing to the earth abundance and low cost of sodium resources. Transition metal phosphides, e.g. MoP, are promising anode materials for sodium‐ion storage, while their detailed reaction mechanisms remain largely unexplored. Herein, the sodium‐ion storage mechanism of hexagonal MoP is systematically investigated through experimental characterizations, density functional theory calculations, and kinetics analysis. Briefly, it is found that the naturally covered surface amorphous molybdenum oxides layers on the MoP grains undergo a faradaic redox reaction during sodiation and desodiation, while the inner crystalline MoP remains unchanged. Remarkably, the MoP anode exhibits a pseudocapacitive‐dominated behavior, enabling the high‐rate sodium storage performance. By coupling the pseudocapacitive anode with a high‐rate‐battery‐type Na3V2O2(PO4)2F@rGO cathode, a novel sodium‐ion full cell delivers a high energy density of 157 Wh kg?1 at 97 W kg?1 and even 52 Wh kg?1 at 9316 W kg?1. These findings present the deep understanding of the sodium‐ion storage mechanism in hexagonal MoP and offer a potential route for the design of high‐rate sodium‐ion storage materials and devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号