首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.

Background and Aims

Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution.

Methods

Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana.

Key Results

In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved.

Conclusions

We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis.  相似文献   

4.
5.
6.
7.
8.

Background and Aims

Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis.

Methods

Serial sectioning and staining with non-specific dyes, periodic–Schiff''s reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling.

Key Results

A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host.

Conclusions

Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite.  相似文献   

9.
10.

Background and Aims

The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of ‘Moncada’ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus.

Methods

The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield.

Key Results

First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load.

Conclusions

These results suggest for the first time that fruit inhibits flowering by repressing CiFT and SOC1 expression in leaves of alternate-bearing citrus. Fruit also reduces CsAP1 expression in leaves, and the significant increase in leaf CsLFY expression from off trees in late February was associated with the onset of floral differentiation.  相似文献   

11.
12.

Background and Aims

Sexual dimorphism, at both the flower and plant level, is widespread in the palm family (Arecaceae), in contrast to the situation in angiosperms as a whole. The tribe Chamaedoreeae is of special interest for studies of the evolution of sexual expression since dioecy appears to have evolved independently twice in this group from a monoecious ancestor. In order to understand the underlying evolutionary pathways, it is important to obtain detailed information on flower structure and development in each of the main clades.

Methods

Dissection and light and scanning electron microscopy were performed on developing flowers of Gaussia attenuata, a neotropical species belonging to one of the three monoecious genera of the tribe.

Key Results

Like species of the other monoecious genera of the Chamaedoreeae (namely Hyophorbe and Synechanthus), G. attenuata produces a bisexual flower cluster known as an acervulus, consisting of a row of male flowers with a basal female flower. Whereas the sterile androecium of female flowers terminated its development at an early stage of floral ontogeny, the pistillode of male flowers was large in size but with no recognizable ovule, developing for a longer period of time. Conspicuous nectary differentiation in the pistillode suggested a possible role in pollinator attraction.

Conclusions

Gaussia attenuata displays a number of floral characters that are likely to be ancestral to the tribe, notably the acervulus flower cluster, which is conserved in the other monoecious genera and also (albeit in a unisexual male form) in the dioecious genera (Wendlandiella and a few species of Chamaedorea). Comparison with earlier data from other genera suggests that large nectariferous pistillodes and early arrest in staminode development might also be regarded as ancestral characters in this tribe.  相似文献   

13.

Background and Aims

The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process.

Methods

A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated.

Key Results

Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones.

Conclusions

No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.  相似文献   

14.

Background

Transposable elements constitute an important part of the genome and are essential in adaptive mechanisms. Transposition events associated with phenotypic changes occur naturally or are induced in insertional mutant populations. Transposon mutagenesis results in multiple random insertions and recovery of most/all the insertions is critical for forward genetics study. Using genome next-generation sequencing data and appropriate bioinformatics tool, it is plausible to accurately identify transposon insertion sites, which could provide candidate causal mutations for desired phenotypes for further functional validation.

Results

We developed a novel bioinformatics tool, ITIS (Identification of Transposon Insertion Sites), for localizing transposon insertion sites within a genome. It takes next-generation genome re-sequencing data (NGS data), transposon sequence, and reference genome sequence as input, and generates a list of highly reliable candidate insertion sites as well as zygosity information of each insertion. Using a simulated dataset and a case study based on an insertional mutant line from Medicago truncatula, we showed that ITIS performed better in terms of sensitivity and specificity than other similar algorithms such as RelocaTE, RetroSeq, TEMP and TIF. With the case study data, we demonstrated the efficiency of ITIS by validating the presence and zygosity of predicted insertion sites of the Tnt1 transposon within a complex plant system, M. truncatula.

Conclusion

This study showed that ITIS is a robust and powerful tool for forward genetic studies in identifying transposable element insertions causing phenotypes. ITIS is suitable in various systems such as cell culture, bacteria, yeast, insect, mammal and plant.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0507-2) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background and Aims

Phenotypic plasticity is based on the organism''s ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants.

Methods

Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours.

Key Results

In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction.

Conclusions

The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.  相似文献   

16.

Background and Aims

The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized.

Methods

Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato.

Key Results

Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family.

Conclusions

This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants.  相似文献   

17.
18.
19.
20.

Background and Aims

The Orchidaceae have a history of recurring convergent evolution in floral function as nectar production has evolved repeatedly from an ancestral nectarless state. However, orchids exhibit considerable diversity in nectary type, position and morphology, indicating that this convergence arose from alternative adaptive solutions. Using the genus Disa, this study asks whether repeated evolution of floral nectaries involved recapitulation of the same nectary type or diversifying innovation. Epidermis morphology of closely related nectar-producing and nectarless species is also compared in order to identify histological changes that accompanied the gain or loss of nectar production.

Methods

The micromorphology of nectaries and positionally equivalent tissues in nectarless species was examined with light and scanning electron microscopy. This information was subjected to phylogenetic analyses to reconstruct nectary evolution and compare characteristics of nectar-producing and nectarless species.

Key Results

Two nectary types evolved in Disa. Nectar exudation by modified stomata in floral spurs evolved twice, whereas exudation by a secretory epidermis evolved six times in different perianth segments. The spur epidermis of nectarless species exhibited considerable micromorphological variation, including strongly textured surfaces and non-secreting stomata in some species. Epidermis morphology of nectar-producing species did not differ consistently from that of rewardless species at the magnifications used in this study, suggesting that transitions from rewardlessness to nectar production are not necessarily accompanied by visible morphological changes but only require sub-cellular modification.

Conclusions

Independent nectary evolution in Disa involved both repeated recapitulation of secretory epidermis, which is present in the sister genus Brownleea, and innovation of stomatal nectaries. These contrasting nectary types and positional diversity within types imply weak genetic, developmental or physiological constraints in ancestral, nectarless Disa. Such functional convergence generated by morphologically diverse solutions probably also underlies the extensive diversity of nectary types and positions in the Orchidaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号