首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background and Aims

The genus Erodium is a common feature of Mediterranean-type climates throughout the world, but the Mediterranean Basin has significantly higher diversity than other areas. The aim here is to reveal the biogeographical history of the genus and the causes behind the evolution of the uneven distribution.

Methods

Seventy-eight new nrITS sequences were incorporated with existing plastid data to explore the phylogenetic relationships and biogeography of Erodium using several reconstruction methods. Divergence times for major clades were calculated and contrasted with other previously published information. Furthermore, topological and temporal diversification rate shift analyses were employed using these data.

Key Results

Phylogenetic relationships among species are widely congruent with previous plastid reconstructions, which refute the classical taxonomical classification. Biogeographical reconstructions point to Asia as the ancestral area of Erodium, arising approx. 18 MYA. Four incidences of intercontinental dispersal from the Mediterranean Basin to similar climates are demonstrated. Increases in diversification were present in two independent Erodium lineages concurrently. Two bursts of diversification (3 MYA and 0·69 MYA) were detected only in the Mediterranean flora.

Conclusions

Two lineages diverged early in the evolution of the genus Erodium: (1) subgenus Erodium plus subgenus Barbata subsection Absinthioidea and (2) the remainder of subgenus Barbata. Dispersal across major water bodies, although uncommon, has had a major influence on the distribution of this genus and is likely to have played as significant role as in other, more easily dispersed, genera. Establishment of Mediterranean climates has facilitated the spread of the genus and been crucial in its diversification. Two, independent, rapid radiations in response to the onset of drought and glacial climate change indicate putative adaptive radiations in the genus.  相似文献   

2.

Background and Aims

The olive (Olea europaea subsp. europaea) was domesticated in the Mediterranean area but its wild relatives are distributed over three continents, from the Mediterranean basin to South Africa and south-western Asia. Recent studies suggested that this crop originated in the Levant while a secondary diversification occurred in most westward areas. A possible contribution of the Saharan subspecies (subsp. laperrinei) has been highlighted, but the data available were too limited to draw definite conclusions. Here, patterns of genetic differentiation in the Mediterranean and Saharan olives are analysed to test for recent admixture between these taxa.

Methods

Nuclear microsatellite and plastid DNA (ptDNA) data were compiled from previous studies and completed for a sample of 470 cultivars, 390 wild Mediterranean trees and 270 Saharan olives. A network was reconstructed for the ptDNA haplotypes, while a Bayesian clustering method was applied to identify the main gene pools in the data set and then simulate and test for early generations of admixture between Mediterranean and Saharan olives.

Key Results

Four lineages of ptDNA haplotypes are recognized: three from the Mediterranean basin and one from the Sahara. Only one haplotype, primarily distributed in the Sahara, is shared between laperrinei and europaea. This haplotype is detected once in ‘Dhokar’, a cultivar from the Maghreb. Nuclear microsatellites show geographic patterns of genetic differentiation in the Mediterranean olive that reflect the primary origins of cultivars in the Levant, and indicate a high genetic differentiation between europaea and laperrinei. No first-generation hybrid between europaea and laperrinei is detected, but recent, reciprocal admixture between Mediterranean and Saharan subspecies is found in a few accessions, including ‘Dhokar’.

Conclusions

This study reports for the first time admixture between Mediterranean and Saharan olives. Although its contribution remains limited, Laperrine''s olive has been involved in the diversification of cultivated olives.  相似文献   

3.
De Barro P  Ahmed MZ 《PloS one》2011,6(10):e25579

Background

A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally.

Methodology/Principal Findings

Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East – Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region.

Conclusion/Significance

The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.  相似文献   

4.

Background

Olive trees (Olea europaea subsp. europaea var. europaea) naturally grow in areas spanning the Mediterranean basin and towards the East, including the Middle East. In the Iranian plateau, the presence of olives has been documented since very ancient times, though the early history of the crop in this area is shrouded in uncertainty.

Methods

The varieties presently cultivated in Iran and trees of an unknown cultivation status, surviving under extreme climate and soil conditions, were sampled from different provinces and compared with a set of Mediterranean cultivars. All samples were analyzed using SSR and chloroplast markers to establish the relationships between Iranian olives and Mediterranean varieties, to shed light on the origins of Iranian olives and to verify their contribution to the development of the current global olive variation.

Results

Iranian cultivars and ecotypes, when analyzed using SSR markers, clustered separately from Mediterranean cultivars and showed a high number of private alleles, on the contrary, they shared the same single chlorotype with the most widespread varieties cultivated in the Mediterranean.

Conclusion

We hypothesized that Iranian and Mediterranean olive trees may have had a common origin from a unique center in the Near East region, possibly including the western Iranian area. The present pattern of variation may have derived from different environmental conditions, distinct levels and selection criteria, and divergent breeding opportunities found by Mediterranean and Iranian olives.These unexpected findings emphasize the importance of studying the Iranian olive germplasm as a promising but endangered source of variation.  相似文献   

5.

Background and Aims

In the Mediterranean basin, the Italian peninsula has been suggested to be one of the most important glacial refugia for temperate tree species. The orchid genus Epipactis is widely represented in the Italian peninsula by widespread species and several endemic, localized taxa, including selfing and outcrossing taxa. Here the phylogenetic and phylogeographic relationships in a group of closely related taxa in Epipactis are investigated with the aim of understanding the role of this refugial area for cladogenesis and speciation in herbaceous species, such as terrestrial orchids.

Methods

Ribosomal DNA (rDNA) was employed to assess phylogenetic relationships, and plastid sequence variation in the rbcLaccD spacer was used to reveal phylogeographic patterns among plastid haplotypes using a parsimony network.

Key Results

Low genetic variation and shared ribotypes were detected in rDNA, whereas high levels of sequence variation and a strong phylogeographic structure were found in the examined plastid region. The parsimony plastid haplotype network identified two main haplotype groups, one including E. atrorubens/microphylla/muelleri/leptochila and the other including all accessions of E. helleborine and several localized and endemic taxa, with a combination of widespread and rare haplotypes detected across the Italian peninsula. A greater genetic divergence separated the Italian and other European accessions of E. helleborine.

Conclusions

Phylogenetic and phylogeographic patterns support a working hypothesis in which the Italian peninsula has only recently been colonized by Epipactis, probably during the most recent phase of the Quaternary age and, nevertheless, it acted as a remarkable centre of diversification for this orchid lineage. Changes in pollination strategy and recurrent shifts in mating system (from allogamy to autogamy) could have represented the mechanism promoting this rapid diversification and the observed high taxonomic complexity detected in the E. helleborine species complex.  相似文献   

6.

Background and Aims

Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin.

Methods

The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars.

Key Results

Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives.

Conclusions

This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity.  相似文献   

7.

Background and Aims

Riparian systems are prone to invasion by alien plant species. The spread of invasive riparian plants may be facilitated by hydrochory, the transport of seeds by water, but while ecological studies have highlighted the possible role of upstream source populations in the establishment and persistence of stands of invasive riparian plant species, population genetic studies have as yet not fully addressed the potential role of hydrochoric dispersal in such systems.

Methods

A population genetics approach based on a replicated bifurcate sampling design is used to test hypotheses consistent with patterns of unidirectional, linear gene flow expected under hydrochoric dispersal of the invasive riparian plant Impatiens glandulifera in two contrasting river systems.

Key results

A significant increase in levels of genetic diversity downstream was observed, consistent with the accumulation of propagules from upstream source populations, and strong evidence was found for organization of this diversity between different tributaries, reflecting the dendritic organization of the river systems studied.

Conclusions

These findings indicate that hydrochory, rather than anthropogenic dispersal, is primarily responsible for the spread of I. glandulifera in these river systems, and this is relevant to potential approaches to the control of invasive riparian plant species.  相似文献   

8.

Background and Aims

Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant then it was massively planted by foresters in many countries but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity.

Methods

Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions.

Key Results

Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation.

Conclusions

This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.  相似文献   

9.

Background and Aims

Salvia is the largest genus in Lamiaceae and it has recently been found to be non-monophyletic. Molecular data on Old World Salvia are largely lacking. In this study, we present data concerning Salvia in Africa. The focus is on the colonization of the continent, character evolution and the switch of pollination systems in the genus.

Methods

Maximum likelihood and Bayesian inference were used for phylogenetic reconstruction. Analyses were based on two nuclear markers [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and one plastid marker (rpl32-trnL). Sequence data were generated for 41 of the 62 African taxa (66 %). Mesquite was used to reconstruct ancestral character states for distribution, life form, calyx shape, stamen type and pollination syndrome.

Key Results

Salvia in Africa is non-monophyletic. Each of the five major regions in Africa, except Madagascar, was colonized at least twice, and floristic links between North African, south-west Asian and European species are strongly supported. The large radiation in Sub-Saharan Africa (23 species) can be traced back to dispersal from North Africa via East Africa to the Cape Region. Adaptation to bird pollination in southern Africa and Madagascar reflects parallel evolution.

Conclusions

The phenotypic diversity in African Salvia is associated with repeated introductions to the continent. Many important evolutionary processes, such as colonization, adaptation, parallelism and character transformation, are reflected in this comparatively small group. The data presented in this study can help to understand the evolution of Salvia sensu lato and other large genera.  相似文献   

10.

Background and Aims

Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern.

Methods

Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies).

Key Results

S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae.

Conclusions

Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India.  相似文献   

11.

Background and Aims

The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy.

Methods

Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful.

Key Results

Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia.

Conclusions

The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research.  相似文献   

12.

Background and Aims

The subgenus Ceratotropis in the genus Vigna is widely distributed from the Himalayan highlands to South, Southeast and East Asia. However, the interspecific and geographical relationships of its members are poorly understood. This study investigates the phylogeny and biogeography of the subgenus Ceratotropis using chloroplast DNA sequence data.

Methods

Sequence data from four intergenic spacer regions (petA-psbJ, psbD-trnT, trnT-trnE and trnT-trnL) of chloroplast DNA, alone and in combination, were analysed using Bayesian and parsimony methods. Divergence times for major clades were estimated with penalized likelihood. Character evolution was examined by means of parsimony optimization and MacClade.

Key Results

Parsimony and Bayesian phylogenetic analyses on the combined data demonstrated well-resolved species relationships in which 18 Vigna species were divided into two major geographical clades: the East Asia–Southeast Asian clade and the Indian subcontinent clade. Within these two clades, three well-supported eco-geographical groups, temperate and subtropical (the East Asia–Southeast Asian clade) and tropical (the Indian subcontinent clade), are recognized. The temperate group consists of V. minima, V. nepalensis and V. angularis. The subtropical group comprises the V. nakashimaeV. riukiuensisV. minima subgroup and the V. hirtellaV. exilisV. umbellata subgroup. The tropical group contains two subgroups: the V. trinerviaV. reflexo-pilosaV. trilobata subgroup and the V. mungoV. grandiflora subgroup. An evolutionary rate analysis estimated the divergence time between the East Asia–Southeast Asia clade and the Indian subcontinent clade as 3·62 ± 0·3 million years, and that between the temperate and subtropical groups as 2·0 ± 0·2 million years.

Conclusions

The findings provide an improved understanding of the interspecific relationships, and ecological and geographical phylogenetic structure of the subgenus Ceratotropis. The quaternary diversification of the subgenus Ceratotropis implicates its geographical dispersal in the south-eastern part of Asia involving adaptation to climatic condition after the collision of the Indian subcontinent with the Asian plate. The phylogenetic results indicate that the epigeal germination is plesiomorphic, and the germination type evolved independently multiple times in this subgenus, implying its limited taxonomic utility.  相似文献   

13.

Background and Aims

Disturbances occur in most ecological systems, and play an important role in biological invasions. We delimit five key disturbance aspects: intensity, frequency, timing, duration and extent. Few studies address more than one of these aspects, yet interactions and interdependence between aspects may lead to complex outcomes.

Methods

In a two-cohort experimental study, we examined how multiple aspects (intensity, frequency and timing) of a mowing disturbance regime affect the survival, phenology, growth and reproduction of an invasive thistle Carduus nutans (musk thistle).

Key Results

Our results show that high intensity and late timing strongly delay flowering phenology and reduce plant survival, capitulum production and plant height. A significant interaction between intensity and timing further magnifies the main effects. Unexpectedly, high frequency alone did not effectively reduce reproduction. However, a study examining only frequency and intensity, and not timing, would have erroneously attributed the importance of timing to frequency.

Conclusions

We used management of an invasive species as an example to demonstrate the importance of a multiple-aspect disturbance framework. Failure to consider possible interactions, and the inherent interdependence of certain aspects, could result in misinterpretation and inappropriate management efforts. This framework can be broadly applied to improve our understanding of disturbance effects on individual responses, population dynamics and community composition.  相似文献   

14.

Background

E.coli ST131 is a globally disseminated clone of multi-drug resistant E. coli responsible for that vast majority of global extra-intestinal E. coli infections. Recent global genomic epidemiological studies have highlighted the highly clonal nature of this group of bacteria, however there appears to be inconsistency in some phenotypes associated with the clone, in particular capsule types as determined by K-antigen testing both biochemically and by PCR.

Results

We performed improved quality assemblies on ten ST131 genomes previously sequenced by our group and compared them to a new reference genome sequence JJ1886 to identify the capsule loci across the drug-resistant clone H30Rx. Our data shows considerable genetic diversity within the capsule locus of H30Rx clone strains which is mirrored by classical K antigen testing. The varying capsule locus types appear to be randomly distributed across the H30Rx phylogeny suggesting multiple recombination events at this locus, but that this capsule heterogeneity has little to no effect on virulence associated phenotypes in vitro.

Conclusions

Our data provides a framework for determining the capsular genetics of E. coli ST131 and further beyond to ExPEC strains, and highlights how capsular mosaicism may be an important strategy in becoming a successful globally disseminated human pathogen.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-830) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background and Aims

It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean.

Methods

The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck.

Key Results

Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years.

Conclusions

As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south China contain tremendous genetic resources for cultivar improvement.  相似文献   

16.

Background

The origin of the Etruscan civilization (Etruria, Central Italy) is a long-standing subject of debate among scholars from different disciplines. The bulk of the information has been reconstructed from ancient texts and archaeological findings and, in the last few years, through the analysis of uniparental genetic markers.

Methods

By meta-analyzing genome-wide data from The 1000 Genomes Project and the literature, we were able to compare the genomic patterns (>540,000 SNPs) of present day Tuscans (N = 98) with other population groups from the main hypothetical source populations, namely, Europe and the Middle East.

Results

Admixture analysis indicates the presence of 25–34% of Middle Eastern component in modern Tuscans. Different analyses have been carried out using identity-by-state (IBS) values and genetic distances point to Eastern Anatolia/Southern Caucasus as the most likely geographic origin of the main Middle Eastern genetic component observed in the genome of modern Tuscans.

Conclusions

The data indicate that the admixture event between local Tuscans and Middle Easterners could have occurred in Central Italy about 2,600–3,100 years ago (y.a.). On the whole, the results validate the theory of the ancient historian Herodotus on the origin of Etruscans.  相似文献   

17.

Background and Aims

Here evidence for reticulation in the pantropical orchid genus Polystachya is presented, using gene trees from five nuclear and plastid DNA data sets, first among only diploid samples (homoploid hybridization) and then with the inclusion of cloned tetraploid sequences (allopolyploids). Two groups of tetraploids are compared with respect to their origins and phylogenetic relationships.

Methods

Sequences from plastid regions, three low-copy nuclear genes and ITS nuclear ribosomal DNA were analysed for 56 diploid and 17 tetraploid accessions using maximum parsimony and Bayesian inference. Reticulation was inferred from incongruence between gene trees using supernetwork and consensus network analyses and from cloning and sequencing duplicated loci in tetraploids.

Key Results

Diploid trees from individual loci showed considerable incongruity but little reticulation signal when support from more than one gene tree was required to infer reticulation. This was coupled with generally low support in the individual gene trees. Sequencing the duplicated gene copies in tetraploids showed clearer evidence of hybrid evolution, including multiple origins of one group of tetraploids included in the study.

Conclusions

A combination of cloning duplicate gene copies in allotetraploids and consensus network comparison of gene trees allowed a phylogenetic framework for reticulation in Polystachya to be built. There was little evidence for homoploid hybridization, but our knowledge of the origins and relationships of three groups of allotetraploids are greatly improved by this study. One group showed evidence of multiple long-distance dispersals to achieve a pantropical distribution; another showed no evidence of multiple origins or long-distance dispersal but had greater morphological variation, consistent with hybridization between more distantly related parents.  相似文献   

18.

Background and aims

Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems.

Methods

The analyses included 118 samples, belonging to 103 species and 25 genera, for three DNA regions (nrITS, mitochondrial cox1 intron and plastid rpl16 intron). Bayesian and maximum-parsimony methods were used to construct a well-supported and dated tree. Evolutionary trends in the subtribe were analysed using Bayesian and maximum-likelihood methods of character evolution.

Key Results

The dated phylogenetic tree strongly supported the recently recircumscribed generic concepts of Bateman and collaborators. Moreover, it was found that Orchidinae have diversified in the Mediterranean basin during the last 15 million years, and one potential example of reticulate evolution in the subtribe was identified. In Orchidinae, pollination systems have shifted on numerous occasions during the last 23 million years.

Conclusions

The results indicate that ancestral Orchidinae were hymenopteran-pollinated, food-deceptive plants and that these traits have been dominant throughout the evolutionary history of the subtribe in the Mediterranean. Evidence was also obtained that the onset of sexual deception might be linked to an increase in labellum size, and the possibility is discussed that diversification in Orchidinae developed in parallel with diversification of bees and wasps from the Miocene onwards.  相似文献   

19.
20.

Background and Aims

The enemy release hypothesis assumes that invasive plants lose their co-evolved natural enemies during introduction into the new range. This study tested, as proposed by the evolution of increased competitive ability (EICA) hypothesis, whether escape from enemies results in a decrease in defence ability in plants from the invaded range. Two straightforward aspects of the EICA are examined: (1) if invasives have lost their enemies and their defence, they should be more negatively affected by their full natural pre-invasion herbivore spectrum than their native conspecifics; and (2) the genetic basis of evolutionary change in response to enemy release in the invasive range has not been taken sufficiently into account.

Methods

Lythrum salicaria (purple loosestrife) from several populations in its native (Europe) and invasive range (North America) was exposed to all above-ground herbivores in replicated natural populations in the native range. The experiment was performed both with plants raised from field-collected seeds as well as with offspring of these where maternal effects were removed.

Key Results

Absolute and relative leaf damage was higher for introduced than for native plants. Despite having smaller height growth rate, invasive plants attained a much larger final size than natives irrespective of damage, indicating large tolerance rather than effective defence. Origin effects on response to herbivory and growth were stronger in second-generation plants, suggesting that invasive potential through enemy release has a genetic basis.

Conclusions

The findings support two predictions of the EICA hypothesis – a genetically determined difference between native and invasive plants in plant vigour and response to enemies – and point to the importance of experiments that control for maternal effects and include the entire spectrum of native range enemies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号