首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12–Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.  相似文献   

2.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane‐bound vesicles termed autophagosomes. The conserved Atg5–Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5–Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5–Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre‐autophagosomal structure but is essential for autophagy and cytoplasm‐to‐vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5–Atg12/Atg16 complex during autophagosome formation.  相似文献   

3.
Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.  相似文献   

4.
Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal α helices and a ubiquitin-like core. Atg8 family members are expressed in various tissues, where they participate in multiple cellular processes, such as intracellular membrane trafficking and autophagy. Their role in autophagy has been intensively studied. Atg8 proteins undergo a unique ubiquitin-like conjugation to phosphatidylethanolamine on the autophagic membrane, a process essential for autophagosome formation. Whereas yeast has a single Atg8 gene, many other eukaryotes contain multiple Atg8 orthologs. Atg8 genes of multicellular animals can be divided, by sequence similarities, into three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3), γ-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16), which are present in sponges, cnidarians (such as sea anemones, corals and hydras) and bilateral animals. Although genes from all three subfamilies are found in vertebrates, some invertebrate lineages have lost the genes from one or two subfamilies. The amino terminus of Atg8 proteins varies between the subfamilies and has a regulatory role in their various functions. Here we discuss the evolution of Atg8 proteins and summarize the current view of their function in intracellular trafficking and autophagy from a structural perspective.  相似文献   

5.
The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several protein aggregates, including aggregates of the p62 homologue SQST-1, but has little effect on other autophagy-regulated processes. EPG-7 self-oligomerizes and is degraded by autophagy independently of SQST-1. SQST-1 directly interacts with EPG-7 and colocalizes with EPG-7 aggregates in autophagy mutants. Mutations in epg-7 impair association of SQST-1 aggregates with LGG-1/Atg8 puncta. EPG-7 interacts with multiple ATG proteins and colocalizes with ATG-9 puncta in various autophagy mutants. Unlike core autophagy genes, epg-7 is dispensable for starvation-induced autophagic degradation of substrate aggregates. Our results indicate that under physiological conditions a scaffold protein endows cargo specificity and also elevates degradation efficiency by linking the cargo–receptor complex with the autophagic machinery.  相似文献   

6.
Two ubiquitin-like molecules, Atg12 and LC3/Atg8, are involved in autophagosome biogenesis. Atg12 is conjugated to Atg5 and forms an ~800-kDa protein complex with Atg16L (referred to as Atg16L complex). LC3/Atg8 is conjugated to phosphatidylethanolamine and is associated with autophagosome formation, perhaps by enabling membrane elongation. Although the Atg16L complex is required for efficient LC3 lipidation, its role is unknown. Here, we show that overexpression of Atg12 or Atg16L inhibits autophagosome formation. Mechanistically, the site of LC3 lipidation is determined by the membrane localization of the Atg16L complex as well as the interaction of Atg12 with Atg3, the E2 enzyme for the LC3 lipidation process. Forced localization of Atg16L to the plasma membrane enabled ectopic LC3 lipidation at that site. We propose that the Atg16L complex is a new type of E3-like enzyme that functions as a scaffold for LC3 lipidation by dynamically localizing to the putative source membranes for autophagosome formation.  相似文献   

7.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

8.
Although ubiquitin is thought to be important for the autophagic sequestration of invading bacteria (also called xenophagy), its precise role remains largely enigmatic. Here we determined how ubiquitin is involved in this process. After invasion, ubiquitin is conjugated to host cellular proteins in endosomes that contain Salmonella or transfection reagent–coated latex (polystyrene) beads, which mimic invading bacteria. Ubiquitin is recognized by the autophagic machinery independently of the LC3–ubiquitin interaction through adaptor proteins, including a direct interaction between ubiquitin and Atg16L1. To ensure that invading pathogens are captured and degraded, Atg16L1 targeting is secured by two backup systems that anchor Atg16L1 to ubiquitin-decorated endosomes. Thus, we reveal that ubiquitin is a pivotal molecule that connects bacteria-containing endosomes with the autophagic machinery upstream of LC3.  相似文献   

9.
Nakatogawa H  Ishii J  Asai E  Ohsumi Y 《Autophagy》2012,8(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8-PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8-PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8-PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8-PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

10.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

11.
The members of the LC3/Atg8 family of proteins are covalently attached to phagophore and autophagosomal membranes. At the last step of the LC3 lipidation cascade, LC3 is transferred from the E2 enzyme ATG3 to phosphatidylethanolamine (PE). This transfer is stimulated by the ATG12–ATG5-ATG16L1 E3 complex, but the mechanism is not fully understood. We recently found that ATG12 of the E3 binds to a short sequence in the flexible region (FR) of ATG3 with high affinity, and that this interaction is critical for E2–E3 complex formation. These findings, together with detailed structural analyses of this interaction, define the properties of ATG12 and provide new insights of how LC3 transfer begins with ATG3 recruitment by ATG12.  相似文献   

12.
Autophagy is a bulk degradation process in eukaryotic cells; autophagosomes enclose cytoplasmic components for degradation in the lysosome/vacuole. Autophagosome formation requires two ubiquitin-like conjugation systems, the Atg12 and Atg8 systems, which are tightly associated with expansion of autophagosomal membrane. Previous studies have suggested that there is a hierarchy between these systems; the Atg12 system is located upstream of the Atg8 system in the context of Atg protein organization. However, the concrete molecular relationship is unclear. Here, we show using an in vitro Atg8 conjugation system that the Atg12-Atg5 conjugate, but not unconjugated Atg12 or Atg5, strongly enhances the formation of the other conjugate, Atg8-PE. The Atg12-Atg5 conjugate promotes the transfer of Atg8 from Atg3 to the substrate, phosphatidylethanolamine (PE), by stimulating the activity of Atg3. We also show that the Atg12-Atg5 conjugate interacts with both Atg3 and PE-containing liposomes. These results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugation.  相似文献   

13.
Many proteins involved in autophagy have been identified in the yeast Saccharomyces cerevisiae. For example, Atg3 and Atg10 are two E2 enzymes that facilitate the conjugation of the ubiquitin-like proteins (Ubls) Atg8 and Atg12, respectively. Here, we describe the identification and characterization of the predicted Atg10 homolog (SpAtg10) of the evolutionarily distant Schizosaccharomyces pombe. Unexpectedly, SpAtg10 is not essential for autophagy. Instead, we find that SpAtg10 is essential for normal cell cycle progression, and for responses to various stress conditions that perturb the cell cycle, independently of Atg12 conjugation. Taken together, our data indicate that autophagic Ubl conjugation pathways differ between eukaryotes and, furthermore, that enzymes such as Atg10 may have additional functions in controlling key cellular processes such as cell cycle progression. Atg10-related proteins are found from yeast to humans, and, thus, this study has implications for understanding the functions of this protein family in Ubl conjugation in eukaryotes.  相似文献   

14.
15.
The autophagy-related protein 8 (Atg8) conjugation system is essential for the formation of double-membrane vesicles called autophagosomes during autophagy, a bulk degradation process conserved among most eukaryotes. It is also important in yeast for recognizing target vacuolar enzymes through the receptor protein Atg19 during the cytoplasm-to-vacuole targeting (Cvt) pathway, a selective type of autophagy. Atg3 is an E2-like enzyme that conjugates Atg8 with phosphatidylethanolamine. Here, we show that Atg3 directly interacts with Atg8 through the WEDL sequence, which is distinct from canonical interaction between E2 and ubiquitin-like modifiers. Moreover, NMR experiments suggest that the mode of interaction between Atg8 and Atg3 is quite similar to that between Atg8/LC3 and the Atg8 family interacting motif (AIM) conserved in autophagic receptors, such as Atg19 and p62. Thus, the WEDL sequence in Atg3 is a canonical AIM. In vitro analyses showed that Atg3 AIM is crucial for the transfer of Atg8 from the Atg8∼Atg3 thioester intermediate to phosphatidylethanolamine but not for the formation of the intermediate. Intriguingly, in vivo experiments showed that it is necessary for the Cvt pathway but not for starvation-induced autophagy. Atg3 AIM attenuated the inhibitory effect of Atg19 on Atg8 lipidation in vitro, suggesting that Atg3 AIM may be important for the lipidation of Atg19-bound Atg8 during the Cvt pathway.  相似文献   

16.
Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation.  相似文献   

17.
Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable ~3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1–Atg13–FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1–Atg13–FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the ~3-MDa ULK1–Atg13–FIP200 complex.  相似文献   

18.
Autophagosome biogenesis requires two ubiquitin‐like conjugation systems. One couples ubiquitin‐like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin‐like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P‐containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β‐propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled‐coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6‐motif in the N‐terminal helical domain of Atg8, but not its AIM‐binding site. Accordingly, the Atg8 AIM‐binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P‐dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.  相似文献   

19.
《Autophagy》2013,9(9):1334-1348
In the process of autophagy, the Atg8 protein is conjugated, through a ubiquitin-like system, to the lipid phosphatidylethanolamine (PE) to associate with the membrane of forming autophagosomes. There, it plays a crucial role in the genesis of these organelles and in autophagy in general. In most eukaryotes, the cysteine peptidase Atg4 processes the C terminus of cytosolic Atg8 to regulate its association with autophagosomal membranes and also delipidates Atg8 to release this protein from membranes. The parasitic protist Toxoplasma gondii contains a functional, yet apparently reduced, autophagic machinery. T. gondii Atg8 homolog, in addition to a cytosolic and occasionally autophagosomal localization, also localizes to the apicoplast, a nonphotosynthetic plastid bounded by four membranes. Our attempts to interfere with TgATG8 function showed that it appears to be essential for parasite multiplication inside its host cell. This protein also displays a peculiar C terminus that does not seem to necessitate processing prior to membrane association and yet an unusually large Toxoplasma homolog of ATG4 is predicted in the parasite genome. A TgATG4 conditional expression mutant that we have generated is severely affected in growth, and displays significant alterations at the organellar level, noticeably with a fragmentation of the mitochondrial network and a loss of the apicoplast. TgATG4-depleted parasites appear to be defective in the recycling of membrane-bound TgATG8. Overall, our data highlight a role for the TgATG8 conjugation pathway in maintaining the homeostasis of the parasite’s organelles and suggest that Toxoplasma has evolved a specialized autophagic machinery with original regulation.  相似文献   

20.
Autophagy is a cellular degradation pathway involving the shape transformation of lipid bilayers. During the onset of autophagy, the water-soluble protein Atg8 binds covalently to phosphatdylethanolamines (PEs) in the membrane in an ubiquitin-like reaction coupled to ATP hydrolysis. We reconstituted the Atg8 conjugation system in giant and nm-sized vesicles with a minimal set of enzymes and observed that formation of Atg8-PE on giant vesicles can cause substantial tubulation of membranes even in the absence of Atg12-Atg5-Atg16. Our findings show that ubiquitin-like processes can actively change properties of lipid membranes and that membrane crowding by proteins can be dynamically regulated in cells. Furthermore we provide evidence for curvature sorting of Atg8-PE. Curvature generation and sorting are directly linked to organelle shapes and, thus, to biological function. Our results suggest that a positive feedback exists between the ubiquitin-like reaction and the membrane curvature, which is important for dynamic shape changes of cell membranes, such as those involved in the formation of autophagosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号