首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

2.
J Song  F Dong  J Jiang 《Génome》2000,43(1):199-204
Lack of reliable techniques for chromosome identification is the major obstacle for cytogenetics research in plant species with large numbers of small chromosomes. To promote molecular cytogenetics research of potato (Solanum tuberosum, 2n = 4x = 48) we developed a bacterial artificial chromosome (BAC) library of a diploid potato species S. bulbocastanum. The library consists of 23,808 clones with an average insert size of 155 kb, and represents approximately 3.7 equivalents to the potato genome. The majority of the clones in the BAC library generated distinct signals on specific potato chromosomes using fluorescence in situ hybridization (FISH). The hybridization signals provide excellent cytological markers to tag individual potato chromosomes. We also demonstrated that the BAC clones can be mapped to specific positions on meiotic pachytene chromosomes. The excellent resolution of pachytene FISH can be used to construct a physical map of potato by mapping molecular marker-targeted BAC clones on pachytene chromosomes.  相似文献   

3.
F Dong  J M McGrath  J P Helgeson  J Jiang 《Génome》2001,44(4):729-734
Genomic in situ hybridization (GISH) is one of the most popular and effective techniques for detecting alien chromatin introgressed into breeding lines; however, GISH analysis alone does not reveal the genetic identity of the alien chromosomes. We previously isolated a set of bacterial artificial chromosomes (BACs) specific to each of the 12 potato chromosomes. These BAC clones can be used as chromosome-specific cytogenetic DNA markers (CSCDMs) for potato chromosome identification. Here we demonstrate that GISH and fluorescence in situ hybridization (FISH), using CSCDMs, can be performed sequentially on the same chromosome preparations. Somatic metaphase chromosomes prepared using an enzymatic digestion and "flame-drying" procedure allows repeated probing up to five times without significant damage to chromosome morphology. The sequential GISH and FISH analyses reveal the genomic origin and genetic identity of the alien chromosomes in a single experiment and also determine whether an alien chromosome has been added to the genetic background of potato or is substituting for a homoeologous potato chromosome. The sequential GISH and FISH procedures should be widely applicable for germplasm characterization, especially in plant species with small-sized chromosomes.  相似文献   

4.
Carica papaya L. is a tropical and sub-tropical fruit-tree crop with a small genome and nine pairs of chromosomes. The transgenic cultivar ‘SunUp’ has been sequenced and three high-density genetic maps are available for mapping agronomically and economically-important traits. However, the small size and similar morphology of papaya chromosomes hinder their identification and few cytological resources are available for integration of genetic and cytogenetic information. Fluorescence in situ hybridization (FISH) was performed on mitotic metaphase chromosomes using BAC clones harboring mapped simple sequence repeat (SSR) markers as probes. A total of 104 BAC clones covering all 12 linkage groups (LGs) were tested and 12 of them, that gave a single specific signal, were chosen as representative of the 12 LGs of the SSR genetic map. This set of chromosome-specific DNA markers acted as a foundation for papaya chromosome karyotyping and re-assigning orientation of LGs. Chromosome-specific markers allowed us to assign the minor LGs 10, 11, and 12 to major LGs 8, 9, and 7, respectively. We thus reduced the number of LGs in the genetic map to nine, corresponding to the haploid number of papaya chromosomes. We also tested the relative order of DNA markers on minor LGs 10 and 11 to place them on top of LGs 8 and 9 in the correct orientation. Ribosomal DNAs (rDNAs), a set of major cytogenetic markers, were positioned on specific papaya chromosomes. The 25S rDNA showed strong signals at the constriction site of a single pair of chromosomes identified as LG 2 by LG 2-specific BAC clone. The 5S rDNA showed strong signals on two pairs of chromosomes that are syntenic with LG 4- and LG 5-specific BAC clones. This integrated map will facilitate genome assembly, quantitative trait locus (QTL) mapping, and the study of cytological, physical and genetic distance relationships between papaya chromosomes.  相似文献   

5.
Here we demonstrate fluorescencein situ hybridization (FISH) of chromosome-specific cytogenetic DNA markers for chromosome identification in maize using repetitive and single copy probes. The fluorescently labeled probes, CentC and pZm4–21, were shown to be reliable cytogenetic markers in the maize inbred line KYS for identification of mitotic metaphase chromosomes. The fluorescent strength of CentC signal, relative position, knob presence, size and location were used for the karyotyping. Based on direct visual analysis of chromosome length and position of FISH signals, a metaphase karyotype was constructed for maize inbred line KYS. All chromosomes could be identified unambiguously. The knob positions in the karyotype agreed well with those derived from traditional cytological analyses except chromosomes 3, 4 and 8. One chromosome with a telomeric knob on the short arm was assigned to 3. A chromosome with a knob in the middle of the long arm was assigned number 4 by simultaneous hybridization with a knob-specific probe pZm4–21 and a chromosome 4-specific probe Cent 4. On chromosome 8, we found an additional small telomeric knob on the short arm. In addition, chromosome-specific probes were employed to identify chromosome 6 (45S rDNA) and chromosome 9 (single-copy probeumc105a cosmid).  相似文献   

6.
Fluorescence in situ hybridization (FISH), using bacterial artificial chromosome (BAC) clone as probe, is a reliable cytological technique for chromosome identification. It has been used in many plants, especially in those containing numerous small chromosomes. We previously developed eight chromosome-specific BAC clones from tetraploid cotton, which were used as excellent cytological markers for chromosomes identification. Here, we isolated the other chromosome-specific BAC clones to make a complete set for the identification of all 26 chromosome-pairs by this technology in tetraploid cotton (Gossypium hirsutum L.). This set of BAC markers was demonstrated to be useful to assign each chromosome to a genetic linkage group unambiguously. In addition, these BAC clones also served as convenient and reliable landmarks for establishing physical linkage with unknown targeted sequences. Moreover, one BAC containing an EST, with high sequence similarity to a G. hirsutum ethylene-responsive element-binding factor was located physically on the long arm of chromosome A7 with the help of a chromosome-A7-specific BAC FISH marker. Comparative analysis of physical marker positions in the chromosomes by BAC-FISH and genetic linkage maps demonstrated that most of the 26 BAC clones were localized close to or at the ends of their respective chromosomes, and indicated that the recombination active regions of cotton chromosomes are primarily located in the distal regions. This technology also enables us to make associations between chromosomes and their genetic linkage groups and re-assign each chromosome according to the corresponding genetic linkage group. This BAC clones and BAC-FISH technology will be useful for us to evaluate grossly the degree to which a linkage map provides adequate coverage for developing a saturated genetic map, and provides a powerful resource for cotton genomic researches.  相似文献   

7.
8.
We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North–South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome‐specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S‐5.8S‐25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber‐FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.  相似文献   

9.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

10.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

11.
The aim of this study was to increase the number of type I markers on the horse cytogenetic map and to improve comparison with maps of other species, thus facilitating positional candidate cloning studies. BAC clones from two different sources were FISH mapped: homologous horse BAC clones selected from our newly extended BAC library using consensus primer sequences and heterologous goat BAC clones. We report the localization of 136 genes on the horse cytogenetic map, almost doubling the number of cytogenetically mapped genes with 48 localizations from horse BAC clones and 88 from goat BAC clones. For the first time, genes were mapped to ECA13p, ECA29, and probably ECA30. A total of 284 genes are now FISH mapped on the horse chromosomes. Comparison with the human map defines 113 conserved segments that include new homologous segments not identified by Zoo-FISH on ECA7 and ECA13p.  相似文献   

12.
BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.  相似文献   

13.
To develop reliable techniques for chromosome identification is critical for cytogenetic research, especially for genomes with a large number and smaller-sized chromosomes. An efficient approach using bacterial artificial chromosome (BAC) clones as molecular cytological markers has been developed for many organisms. Herein, we present a set of chromosomal arm-specific molecular cytological markers derived from the gene-enriched regions of the sequenced rice genome. All these markers are able to generate very strong signals on the pachytene chromosomes of Oryza sativa L. (AA genome) when used as fluorescence in situ hybridization (FISH) probes. We further probed those markers to the pachytene chromosomes of O. punctata (BB genome) and O. officinalis (CC genome) and also got very strong signals on the relevant pachytene chromosomes. The signal position of each marker on the related chromosomes from the three different rice genomes was pretty much stable, which enabled us to identify different chromosomes among various rice genomes. We also constructed the karyotype for both O. punctata and O. officinalis with the BB and CC genomes, respectively, by analysis of 10 pachytene cells anchored by these chromosomal arm-specific markers.  相似文献   

14.
Chromosome identification is an essential step in genomic research, which so far has not been possible in oysters. We tested bacteriophage P1 clones for chromosomal identification in the eastern oyster Crassostrea virginica, using fluorescence in situ hybridization (FISH). P1 clones were labeled with digoxigenin-11-dUTP using nick translation. Hybridization was detected with fluorescein-isothiocyanate-labeled anti-digoxigenin antibodies and amplified with 2 layers of antibodies. Nine of the 21 P1 clones tested produced clear and consistent FISH signals when Cot-1 DNA was used as a blocking agent against repetitive sequences. Karyotypic analysis and cohybridization positively assigned the 9 P1 clones to 7 chromosomes. The remaining 3 chromosomes can be separated by size and arm ratio. Five of the 9 P1 clones were sequenced at both ends, providing sequence-tagged sites that can be used to integrate linkage and cytogenetic maps. One sequence is part of the bone morphogenetic protein type 1b receptor, a member of the transforming growth factor superfamily, and mapped to the telomeric region of the long arm of chromosome 2. This study shows that large-insert clones such as P1 are useful as chromosome-specific FISH probes and for gene mapping in oysters.  相似文献   

15.
Onion (Allium cepa L.; 1C=15,000 Mb) is an agriculturally important plant. The genome of onion has been extensively studied at the conventional cytogenetic level, but molecular analyses have lagged behind due to its large genome size. To overcome this bottleneck, a partial bacterial artificial chromosome (BAC) library of onion was constructed. The average insert size of the BAC library was about 100 kb. A total of 48,000 clones, corresponding to 0.32 genome equivalent, were obtained. Fluorescent in situ hybridization (FISH) screening resulted in identification of BAC clones localized on centromeric, telomeric, or several limited interstitial chromosomal regions, although most of the clones hybridized with entire chromosomes. The partial BAC library proved to be a useful resource for molecular cytogenetic studies of onion, and should be useful for further mapping and sequencing studies of important genes of this plant. BAC FISH screening is a powerful method for identification of molecular cytogenetic markers in large-genome plants.  相似文献   

16.
In order to improve the informativeness of the cytogenetic map of the rabbit genome, fourteen markers were regionally mapped to individual chromosomes. The localizations comprise eleven gene loci (PRLR, GHR, HK1, ACE, TF, 18S+28S rDNA, CYP2C4, PMP2, TCRB, ALOX15 and MT1) and three microsatellite loci (Sat13, Sol33 and D1Utr6). Five of the genes contain known microsatellite sequences. To achieve these localizations, homologous and heterologous small insert clones, and clones from a rabbit Bacterial Artificial Chromosome (BAC) library were used as probes for fluorescence in situ hybridization experiments. Results indicate that especially BAC clones are a valuable tool for cytogenetic mapping. Some of the genes were selected for mapping on the basis of human- rabbit comparative painting data, to achieve localizations on gene-poor rabbit chromosomes. Our data are, in general, in agreement with the human-rabbit comparative painting data. By mapping microsatellite sequences that have also been used in linkage studies, links are provided between the genetic and physical maps of the rabbit genome. Linkage groups I, VI and XI could be assigned to chromosomes 1, 5 and 3 respectively. Moreover, in this paper we give an overview of the current status of the rabbit cytogenetic map. This map now comprises 62 physically mapped genes, which are scattered over all autosomes, except chromosome 2, and the X chromosome.  相似文献   

17.
Silene latifolia is a key plant model in the study of sex determination and sex chromosome evolution. Current studies have been based on genetic mapping of the sequences linked to sex chromosomes with analysis of their characters and relative positions on the X and Y chromosomes. Until recently, very few DNA sequences have been physically mapped to the sex chromosomes of S. latifolia. We have carried out multicolor fluorescent in situ hybridization (FISH) analysis of S. latifolia chromosomes based on the presence and intensity of FISH signals on individual chromosomes. We have generated new markers by constructing and screening a sample bacterial artificial chromosome (BAC) library for appropriate FISH probes. Five newly isolated BAC clones yielded discrete signals on the chromosomes: two were specific for one autosome pair and three hybridized preferentially to the sex chromosomes. We present the FISH hybridization patterns of these five BAC inserts together with previously described repetitive sequences (X-43.1, 25S rDNA and 5S rDNA) and use them to analyze the S. latifolia karyotype. The autosomes of S. latifolia are difficult to distinguish based on their relative arm lengths. Using one BAC insert and the three repetitive sequences, we have constructed a standard FISH karyotype that can be used to distinguish all autosome pairs. We also analyze the hybridization patterns of these sequences on the sex chromosomes and discuss the utility of the karyotype mapping strategy presented to study sex chromosome evolution and Y chromosome degeneration.Communicated by J.S. Heslop-Harrison  相似文献   

18.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.  相似文献   

19.
The generation of a 7.5x dog genome assembly provides exciting new opportunities to interpret tumor-associated chromosome aberrations at the biological level. We present a genomic microarray for array comparative genomic hybridization (aCGH) analysis in the dog, comprising 275 bacterial artificial chromosome (BAC) clones spaced at intervals of approximately 10 Mb. Each clone has been positioned accurately within the genome assembly and assigned to a unique chromosome location by fluorescence in situ hybridization (FISH) analysis, both individually and as chromosome-specific BAC pools. The microarray also contains clones representing the dog orthologues of 31 genes implicated in human cancers. FISH analysis of the 10-Mb BAC clone set indicated excellent coverage of each dog chromosome by the genome assembly. The order of clones was consistent with the assembly, but the cytogenetic intervals between clones were variable. We demonstrate the application of the BAC array for aCGH analysis to identify both whole and partial chromosome imbalances using a canine histiocytic sarcoma case. Using BAC clones selected from the array as probes, multicolor FISH analysis was used to further characterize these imbalances, revealing numerous structural chromosome rearrangements. We outline the value of a combined aCGH/FISH approach, together with a well-annotated dog genome assembly, in canine and comparative cancer studies.  相似文献   

20.
The rainbow trout genetic linkage groups have been assigned to specific chromosomes in the OSU (2N=60) strain using fluorescence in situ hybridization (FISH) with BAC probes containing genes mapped to each linkage group. There was a rough correlation between chromosome size and size of the genetic linkage map in centimorgans for the genetic maps based on recombination from the female parent. Chromosome size and structure have a major impact on the female:male recombination ratio, which is much higher (up to 10:1 near the centromeres) on the larger metacentric chromosomes compared to smaller acrocentric chromosomes. Eighty percent of the BAC clones containing duplicate genes mapped to a single chromosomal location, suggesting that diploidization resulted in substantial divergence of intergenic regions. The BAC clones that hybridized to both duplicate loci were usually located in the distal portion of the chromosome. Duplicate genes were almost always found at a similar location on the chromosome arm of two different chromosome pairs, suggesting that most of the chromosome rearrangements following tetraploidization were centric fusions and did not involve homeologous chromosomes. The set of BACs compiled for this research will be especially useful in construction of genome maps and identification of QTL for important traits in other salmonid fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号