首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The submicroscopic structure of the nerve cells in the planarian brain was studied. Close similarities with neurons of other invertebrates were noted. In the cytoplasm of the planarian nerve cells there are at least three types of vesicular inclusions: 1) Clear vesicles (200–800 Å in epon embedded tissue) similar in morphological appearance to classical synaptic vesicles. These have generally some content of extremely low density but occasionally a dense core. 2) Dense vesicles (400–1,200 Å in epon embedded tissue) containing highly osmiophilic granules. Between the limiting membrane of the vesicle and the granule there is always a clear rim of variable width. These vesicles closely resemble synaptic vesicles described in vertebrate adrenergic endings. 3) Neurosecretory vesicles (600–1,300 Å in Vestopal embedded tissue) similar to elementary granules observed in neurosecretory systems in vertebrates and invertebrates. All three vesicle types have the same mode of origin from the Golgi membranes. All are present in the nerve cell processes of the neuropil as well as in the perikarya. Any given perikaryon or axon contains only one of the three vesicle types. All of these vesicles are considered to be discharged into the axons from their site of origin within the perikaryon.  相似文献   

2.
Summary The distribution, morphology and synaptic connections of the hindgut efferent neurons in the last (sixth) abdominal ganglion of the crayfish, Orconectes limosus, have been investigated using light and electron microscopy in conjunction with retrograde cobalt/nickel and HRP labeling through the intestinal nerve. The hindgut efferent neurons occur singly and in clusters, and are unipolar. Their axonal projections are uniform and consist of a thick primary neurite with typical lateral projections and limited arborization of varicose fibers in the ganglionic neuropil. They also send lower order axon processes to the ganglionic neural sheath, where they arborize profusely, forming a network of varicose fibers. The majority of the efferent neurons project to the anterior part of the hindgut. HRP-labeled axon profiles are found in both pre- and postsynaptic position in the neuropil of the ganglion. HRP-labeled axon profiles also establish pre- and postsynaptic contacts in the intestinal nerve root. All hindgut efferent terminals contain similar synaptic vesicle populations: ovoid agranular vesicles (50–60 nm) and a few large granular vesicles (100–200 nm). It is suggested that the hindgut efferent neurons in the last abdominal ganglion are involved in: (1) innervation of the hindgut; (2) central integrative processes; (3) en route synaptic modification of efferent and afferent signals in the intestinal nerve; (4) neurohumoral modulation of peripheral physiological processes.Fellow of the Alexander von Humboldt Stiftung  相似文献   

3.
Summary The magnocellular preoptic nucleus of fishes (Anguilla anguilla, Amiurus nebulosus, Cyprinus carpio, Carassius auratus, Ctenopharyngodon idella, Cichlasoma nigrofasciatum) has been studied by light and electron microscopy.Two kinds of neurons were found: a) large, electron-dense, Gomori-positive cells with moderate acetylcholinesterase (AChE) positivity which contain granulated vesicles of 1400 to 2200 Å (in average 1600 to 1800 Å), and b) small, strongly AChE-positive, electron-lucent neurons containing granulated vesicles of 900 to 1200 Å. The nerve cells are supplied with axo-somatic and axo-dendritic synapses. These are formed by axon terminals containing either 1. synaptic vesicles of 500 Å, or 2. synaptic vesicles of 500 Å and dense-core vesicles of 600 to 800 Å, or 3. synaptic vesicles of 600 Å and granulated vesicles of up to 1100 Å, or 4. synaptic vesicles of about 400 Å and granulated vesicles of up to 1800 Å. The presence of peptidergic and numerous other synapses shows the complexity of the organization and afferentation of the magnocellular preoptic nucleus.In the eel, both types of nerve cells form dendritic terminals within the cerebrospinal fluid (CSF). These CSF contacting dendrites are supplied with 9×2+0 cilia. In the other species investigated, only some large neurons build up intraventricular endings. The ependymofugal process of the CSF contacting neurons enters the preoptic-neurohypophysial tract.Perikarya of both the large and the small cells may give rise to single, paired or multiple 9×2+0 cilia extending into the intercellular space. The number of CSF contacting neurons is reciprocal to the number of perikarya with intercellular cilium. These latter cells may represent modified, more differentiated forms of the CSF contacting neurons. We think that atypical cilia protruding into the intercellular space may have the same significance for the intercellular fluid as the cilia of the intraventricular dendrites of the CSF contacting neurons for the CSF.Dedicated to Prof. Dr. W. Bargmann on the occasion of his 70th birthday.  相似文献   

4.
Summary The fine structure of the synapse between the second-order giant fibre and the third order-giant fibre of the squid Doryteuphis bleekeri was studied by means of electron microscope. In the synaptic region, the two giant fibres are arranged side by side. Many small processes from the third-order giant fibre penetrate the common sheath which separats the adjacent giant axons making synaptic contact with the second order giant axon.The contact surface consists of opposing two plasma membranes of adjacent axons separated by a narrow space of 20–30 m in width. The synaptic membranes are more electron dense and thicker than the other part of the axon membrane. The synaptic vesicles are concentrated exclusively in the presynaptic axon.The fine structural differences between giant synapse in the stellate ganglion of the squid and the giant-to-motor giant synapse of the crayfish were discussed.This work was supported by Grant Number B-3348 from the National Institutes of Health, United States Public Health Service, Department of Health, Education and Welfare.  相似文献   

5.
Summary The magnocellular paraventricular and supraoptic nuclei and the parvocellular preoptic and periventricular nuclei have been studied by light and electron microscopy in Emys orbicularis, Lacerta agilis and Elaphe longissima. The ultrastructure of cerebrospinal fluid (CSF)-contacting neurons was described in the preoptic and periventricular nuclei of Emys and Lacerta species. Single 9×2+0 cilia similar to those of the CSF-contacting dendritic terminals were found on perikarya of non CSF-contacting nerve cells, in all four investigated nuclei. The cilia project from funnel-like invaginations of the perikarya into the intercellular space. In the neurons of the nuclei studied, granular vesicles were found, their size being mainly 1,600 Å in the paraventricular nucleus, about 1,800 Å in the supraoptic nucleus, 1,100 Å in the periventricular nucleus and 800 Å, or up to 1,250 Å in the preoptic nucleus. In general, the neurons possess synapses of the axo-somatic, axo-somatic spine, axo-dendritic and axo-dendritic spine types. In the supraoptic nucleus, multiple interdigitated synapses were observed. Presynaptically, either synaptic vesicles only, or synaptic vesicles and dense core vesicles of different sizes (600 to 800 Å, about 1,100 Å, 1250 Å, and up to 2,000 Å) were found. It is discussed whether the above described 9×2+0 cilia may represent some kind of hypothalamic sensory structure that earlier physiological studies postulated to exist. The ciliated hypothalamic perikarya are considered by the authors to be a more differentiated form of the CSF-contacting neurons. The different types of synapses indicate multilateral connections of the nerve cells of the nuclei studied.Dedicated to Prof. Dr. Berta Scharrer on the occasion of her 70th birthday  相似文献   

6.
At thoracic and lumbar levels the spinal dorsal gray of young specimens of the turtle Chrysemys d'orbigny consists of a cell-free neuropil and an aggregation of perikarya termed here the lateral column of the dorsal horn (LCDH). Nerve cell clusters also occur in the dorsal commissure. The main neuropil area can be divided into a thin superficial layer containing some myelinated fibers (neuropil area Ib) and a compact core composed of unmyelinated axon terminals, dendritic branches, and thin glial processes (neuropil area II). A looser neuropil area is located at the horn base (neuropil area III). The so-called marginal zone of de Lange represents a fourth synaptic field termed here neuropil area Ia. The LCDH consists of neurons of different size and shape. Two peculiar nerve cell types have been recognized in the dorsal horn: giant and bitufted neurons. The former exhibits a large dendritic arbor, which after passing through neuropil areas II and Ib projects into neuropil area Ia and the adjacent white matter. Most frequently Golgi-stained giant neurons have perikarya and dendritic domains on the same side (ipsilateral giant neurons). There are also heterolateral giant neurons whose dendritic branches invade the opposite horn. Bitufted neurons are characterized by the presence of two main dendritic shafts connecting neuropil area II of both dorsal horns. At neuropil levels the major dendritic branches ramify profusely giving rise to short tortuous terminal processes. Perikarya of bitufted neurons occur in the dorsal commissure. The LCDH also contains many small and medium-sized neurons. These are oriented in two main directions: parallel or radial with respect to the dorsal horn surface. The population of horizontally oriented neurons comprises two subtypes termed here alpha and beta. Radially oriented neurons are pleomorphic, defying precise, unequivocal classification.  相似文献   

7.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

8.
Summary The submicroscopic structure of nerve cells in the brain of the earthworm Eisenia was studied. Six types of neurons containing morphologically different inclusions are identified. Types 1, 2 and 3 contain vesicles filled with homogeneous materials of high electron density. These are essentially similar to elementary granules in neurosecretory systems of vertebrates and invertebrates. Type 4 shows dense-cored vesicles which resemble in size catechol-containing granules as described, for example, in chromaffin cells of the adrenal gland. Type 5 has clear vesicles with a mean diameter of 400 Å. Some of these vesicles have a dense osmium deposit. Type 6 contains electron lucent vesicles with diameters of 500–800 Å. Occasionally these have osmiophilic cores. Clear vesicles of types 5 and 6 are similar to classical synaptic vesicles, while granulated vesicles resemble in size and appearance those described in adrenergic nerve endings. All six vesicle types have the same mode of origin from Golgi membranes. All of these vesicles are considered to be discharged from the perikarya into the axons entering the neuropil.  相似文献   

9.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

11.
Six neural elements, viz., retinular axons, a giant monopolar axon, straight descending processes (type I), lamina monopolar axons (type II), processes containing clusters of dense-core vesicles (type III), and processes coursing in various directions with varicosities (type IV), have been identified at the ultrastructural level in the lamina neuropil of the larval tiger beetle Cicindela chinensis. Retinular axons make presynaptic contact with all other types of processes. Type I and II processes possess many pre-and postsynaptic loci. Type II processes presumably constitute retinotopic afferent pathways. It remains uncertain whether type I processes are lamina monopolar axons or long retinular axons extending to the medullar neuropil. Type III processes may be efferent neurons or branches of afferent neurons contributing to local circuits. A giant monopolar axon extends many branches throughout the lamina neuropil; these branches are postsynaptic to retinular axons, and may be nonretinotopic and afferent. Type IV processes course obliquely in the neuropil, being postsynaptic to retinular axons, and presynaptic to type I processes.  相似文献   

12.
Summary The ependymal cells bordering the median eminence to the third ventricle are characterised by many microvillus-like projections and bulbous cell processes of the luminal plasma membrane. The latter contain many vesicles 500–1,000 Å in diameter. Cilia with 9+2 fibrillar pattern are seen occasionally. Adhesive devices in the from of zonula adhaerens and zonula occludens are found in the apical part of the intercellular junction. Unmyelinated nerve fibres with a mean diameter of 1 and containing many electron dense granules of 830–1,330 Å are often seen between the ependymal cells.Two types of glial cells are found in the median eminence. One is characterised by a nucleus with dense blods of chromatin and dense cytoplasm, and it is associated chiefly with the nerve fibres in the region of the hypothalamo-hypophysial tract. The other type of glial cell is characterised by fine, uniformly distributed chromatin in the nucleus and a relatively pale cytoplasm and branched processes which terminate perivascularly in the base of the median eminence.Myelinated nerve fibres are seen only in the region of the hypothalamo-hypophysial tract. Only a part of them contain electron dense granules 1,330–2,330 Å in diameter.Three types of unmyelinated nerve fibres can be distinguished in the median eminence according to the size of the electron dense granules they contain: 1. Nerve fibres containing granules 1,330–2,330 Å in diameter. They are seen primarily in the hypothalamo-hypophysial tract, but also in the zona externa; 2. those containing granules with a mean diameter of 1,330 Å; and 3. those containing granules with a mean diameter of 1,000 Å. The last two types are both encountered in the hypothalamo-hypophysial tract, the zona externa and the perivascular region of the base of the median eminence. Under high magnification, the membrane of the granules show evidence of a trilaminar structure and the content of the granules with a low electron density appeares to consist of small microvesicles or globular components. Besides granules, these nerve fibres contain vesicles mostly 420 Å in diameter whose relative number increases towards the perivascular nerve endings. 53 per cent of the inclusions in the hypothalamo-hypophysial tract are granules and 47 per cent vesicles, while the corresponding percentages for the zona externa are 40 and 60 and for the perivascular nerve endings 20 and 80.The mean width of the pericapillary space is 1 , but it varies greatly. It containes many collagen fibrils and fibroblasts. The capillary endothelium is frequently fenestrated and contains many vesicles of various sizes.Two types of granules-containing cells are found in the pars tuberalis depending on the size of the electron dense granules: 1. cells containing granules with a mean diameter of 1,330 Å: and 2. cells containing granules with a mean diameter of 2,000 Å. In addition, there are occasional follicular cavities filled with amorphous material, microvilli and cilia of 9+2 fibrillar pattern.Aided by a grant from the Sigrid Jusélius Stifteise.  相似文献   

13.
The synaptic inputs and outputs of the major interneuron L10 of the abdominal ganglion of Aplysia were studied using an intracellular staining technique for the electron microscope. The sites of both the chemical synaptic input and output of L10 are localized to the dendritic arborizations that arise from the axon in the ganglion neuropil. Thus, the interneuronal functions are mediated at the dendritic processes and could occur in the absence of spiking in the axon and cell body. The sites of L10 synaptic output are presumed to be at. aggregations of vesicles and mitochondria in the dendrites. The synaptic vesicle content of L10, a cholinergic neuron, with many large dense vesicles resembles that described for serotonergic cells in Aplysia, making distinction of synaptic pharmacology by ultrastructure difficult. Focal membrane specializations with a clear synaptic cleft were not observed between L10 and its large population of postsynaptic cells. In contrast, clear focal input sites were frequently found on L10. Gap junctions, sites of probable electrical coupling between L10 and other neurons, were also found. These observations are discussed as evidence that many synapses do not have focal specializations.  相似文献   

14.
Summary Fine structural observations were made on the vesicle and granule content of ganglion cells in the posterior subclavian ganglion and peripheral nerve fibers of the upper forelimb of the newt Triturus. The populations of vesicles and granules in normal ganglion cells and nerve fibers were compared with those observed after limb transection. In normal neurons, clear vesicles range in size from 250 to 1000 Å in diameter, but are most frequently 400–500 Å. Vesicles with dense contents (granules) also vary greatly in size, but most are 450–550 Å in diameter and correspond to dense-core vesicles. Large granules that contain acid phosphatase activity are thought to be lysosomes. During limb regeneration, in both the ganglion cells and peripheral nerves, the ratio of dense vesicles to clear vesicles increases. There is a large increase in number of dense granules with a diameter over 800 Å, particularly in the peripheral regenerating fibers. This study shows that regenerating neurons differ from normal in their content of vesicular structures, especially large, membrane-bounded granules.This work was supported by grants from the National Science Foundation (GB 7912) and from the National Cancer Institute (TICA-5055), National Institutes of Health, United States Public Health Service.  相似文献   

15.
Summary Development of the axon cap neuropil of the Mauthner neuron in post-hatching larval goldfish brains was observed electron-microscopically. The axonal initial segment of newly hatched (day-4) larvae is completely covered with synaptic terminals containing clear spherical synaptic vesicles. Profiles of thin terminal axons, the spiral fibers, containing similar synaptic vesicles, rapidly increase in number around the initial segment and form glomerular neuropil similar to the central core of the adult axon cap by day 7. Three types of synapses are formed in the core neuropil. Bouton-type synapses contacting the initial segment are most abundant in day-4 to-14 larvae; they decrease thereafter and are rare on the distal half of the initial segment of day-40 larvae. Asymmetric axo-axonic synapses are commonly observed between spiral fibers in the core neuropil of day-7 to -19 larvae, but become fewer by day 40. Unique symmetrical axo-axonic synapses showing accumulation of synaptic vesicles on either side of apposed membrane thickenings first appear in day-14 core neuropil, gradually increase in number, and become the predominant type in day-40 core neuropil. Thick myelinated axons, which lose their myelin sheaths in the glial cap cell layer, start to penetrate into the axon cap on day 10. They gradually increase in number and form the peripheral part of the axon cap together with the cap dendrites, which finally grow into the axon cap from the axon hillock region of the Mauthner cell by day 40.  相似文献   

16.
Summary The ultrastructure of synapses between the cord giant fibres (lateral and medial) and the motor giant fibres in crayfish, Astacus pallipes, third abdominal ganglia have been examined. These electrotonic synapses are asymmetrical, they have synaptic vesicles only in the presynaptic fibre, and they have synaptic cleft widths normally of about 100 Å but narrowed to about 50 Å in restricted areas. Localized increases in density of the synaptic cleft and adjacent membranes also occur within a synapse, and synaptic vesicles are most tightly grouped at the membrane in such areas. Tight or gap junctions with 30 Å or narrower widths have not been found, but the junctions probably function in a similar way to gap junctions.Three small nerves are closely associated with the synapses between the giant fibres. One of these small nerves has round synaptic vesicles and is thought to be excitatory on morphological grounds; one has flattened vesicles and is thought to be inhibitory; and one is postsynaptic to the lateral giant and the two small presynaptic nerves. It is proposed that these small nerves modulate activity in the much larger giant fibre synapse.  相似文献   

17.
Summary The cerebrospinal fluid (CSF) contacting neurons have a dendritic process which protrudes into the central canal, and is provided with one long kinocilium and many shorter stereocilia (about 80 in the turtle) as revealed by scanning electron microscopy. The shape, number and arrangement of the cilia are similar to those of known receptor endings.The silver impregnated axons of these cells converge to a paired centrosuperficial tract forming terminal enlargements at the ventrolateral surface of the spinal cord. Lying among glial endfeet these terminals are ultrastructurally similar to those present in known neurosecretory areas. The nerve endings are attached to the basal lamina, and they comprise many synaptic vesicles (200 to 400 Å in diameter), as well as granular vesicles of different sizes (diameter 600 to 1800 Å). The axons may lie within finger-like protrusions on the surface of the spinal cord, or they may terminate around vessels.Morphological evidence suggests that these nerve terminals and the corresponding CSF contacting perikarya represent a spinal neurosecretory system possibly influenced by information taken up by its special dendrites protruding into the inner CSF space.  相似文献   

18.
Summary The fine structures of the neurons and neuropils of the magnocellular supraoptic nucleus and the parvocellular nuclei of the rostral hypothalamus, including the suprachiasmatic and medial, lateral and periventricular preoptic nuclei, and the neuronal apparatus of the organum vasculosum laminae terminalis, have been examined in the male White-crowned Sparrow, Zonotrichia leucophrys gambelii, by correlated light and electron microscopy.The magnocellular supraoptic nucleus is characterized by large neurosecretory perikarya which contain a well developed Golgi complex and densecored granules 1,500–2,200 Å in diameter. The neuropil displays axons, dendrites and glial fibers. Some axonal profiles contain dense-cored vesicles 800–1,000 Å in diameter and clear vesicles 500 Å in diameter. Axo-somatic and axo-dendritic synapses are conspicuous in this nuclear region.The suprachiasmatic nucleus is characterized by an accumulation of small neurons with moderately developed cellular organelles and some dense-cored granules, approximately 1,000 Å in diameter. The profiles of axons within the neuropil contain dense-cored granules 800–1,000 Å in diameter and clear vesicles 500 Å in diameter.The neurons of the medial preoptic nucleus are relatively large and exhibit well developed cellular organelles and dense-cored granules 1,300 to 1,500 Å in diameter. Granular materials are formed within the Golgi complex. The medial preoptic nucleus is rich in secretory perikarya.Occasionally, neurons with granules 1,500–2,200 Å in diameter are encountered in the lateral preoptic and periventricular preoptic nuclei. They may be considered as scattered elements of the magnocellular (supraoptic and paraventricular) system.The organum vasculosum laminae terminalis consists of three layers, i.e., ependymal, internal and external zones, and exhibits a vascular arrangement similar to that of the median eminence. The perikarya of the parvocellular neurons and their axons in the internal zone contain numerous secretory granules ranging from 1,300 to 1,500 Å in diameter.This investigation was supported by Grant No. 5R040 Japan-U.S. Cooperative Science Program of the Japan Society for the Promotion of Science to Professor H. Kobayashi and Professor S.-I. Mikami, by a Scientific Research Grant No. 56019 from the Ministry of Education of Japan to S.-I. Mikami, by support from the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Biologie der Zeitmessung) to Prof. A. Oksche and by Grant No. GF 33334, U.S.-Japan Cooperative Science Program of the National Science Foundation to Prof. D.S. Farner.Herrn Professor Dr. Dres h.c. Wolfgang Bargmann zu seinem 70. Geburtstag am 27. Januar 1976 gewidmet.  相似文献   

19.
The area postrema of the monkey, Macaca fascicularis, were a pair of oval organs at the caudal end of the floor of fourth ventricle. Their ependymal lining was covered by well-developed microvilli with occasional overlying supraependymal cells. Two types of lining cells were present: pyramidad- and flattened cells. The pyramidal cell showed a long extending basal process resting on the underlying blood vessels. In transmission electron microscopy, the organ showed numerous fenestrated sinusoids characterized by a distinct perivascular space containing mast cells, macrophages and collagen fibrils. The parenchyma of the organ was composed of neurons and glial elements. Only one type of neuron ranging from 9.5 to 15 microns could be distinguished. The neurons contained an indented nucleus surrounded by organelle rich cytoplasm. The soma of the neuron was enclosed by glial element resembling astrocyte. The glial processes terminated on the blood vessel where they were "tunnelled" by a variable number of nerve fibres some of which gained a direct access to the external basal lamina of the perivascular space. Synapses in the neuropil predominantly of the axodendritic variety were observed. Axon terminals containing round agranular vesicles were seen to make synaptic contacts with the neuronal soma. No structural changes were observed in the area postrema following bilateral cervical vagotomy. However, degenerating axon terminals were observed in the subpostremal zone 7, 14 and 21 days after vagotomy suggesting a direct afferent projection into this region.  相似文献   

20.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号